English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/18606
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy

AuthorsGoldfinger, Chris; E. Morey, Ann; Hans Nelson, C.; Gutiérrez-Pastor, Julia; E. Johnson, Joel; Karabanov, Eugene; Chaytor, Jason D.; Ericsson, Andrew; Scientific Party, Shipboard
KeywordsPaleoseismology
Turbidite
Northern San Andreas Fault
Issue Date15-Feb-2007
PublisherElsevier
CitationEarth and Planetary Science Letters 254(1-2): 9-27 (2007)
Abstract74 piston, gravity and jumbo Kasten cores were collected from channel and canyon systems draining the northern California continental margin to investigate the record of periodic Holocene turbidites for possible connection to large magnitude earthquakes on the adjacent Northern San Andreas Fault. Poorly known channel systems were mapped with multibeam sonar to define pathways and channel confluences. Cores sampled all major and many minor channel systems extending from Cape Mendocino to just north of Monterey Bay. Sampling both along and across channels was done and particular attention was paid to channel confluences, as these areas afford opportunities to test for synchronous triggering of turbidity currents. While at sea, all cores were scanned using a GEOTEK multisensor core logger (MSCL), which collects high-resolution photography, P-wave velocity, gamma-ray density, and magnetic susceptibility data from the unsplit cores. Lithology was logged visually, and cores were later imaged with X-radiography. We use 14C ages, relative dating tests at channel confluences, and stratigraphic correlation using physical properties to determine whether turbidites deposited in separate channel systems are correlative, implying they were triggered by a common event. These tests can, in most cases, separate earthquake-triggered turbidity currents from other possible sources. The late Holocene turbidite record off northern California passes these tests for synchronous triggering, and can be correlated with multiple proxies from site to site between Noyo Channel and the latitude of San Francisco. Preliminary comparisons of our event ages with existing and in progress work at onshore coastal sites show good correlation, further circumstantial evidence that the offshore record is primarily earthquake generated. During the last not, vert, similar 2800 yr, 15 turbidites are recognized, including the great 1906 earthquake. Their chronology establishes an average repeat time of not, vert, similar 200 yr, similar to the onshore value of not, vert, similar 230 yr. Along-strike correlation suggests that at least 8 of the youngest 10 of these events ruptured the 320 km distance from the Mendocino Triple Junction to near San Francisco.
Description19 pages, 9 figures.
Publisher version (URL)http://dx.doi.org/10.1016/j.epsl.2006.11.017
URIhttp://hdl.handle.net/10261/18606
DOI10.1016/j.epsl.2006.11.017
ISSN0920-3796
Appears in Collections:(IACT) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.