English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/183891
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Lessons from genome skimming of arthropod-preserving ethanol

AuthorsLinard, Benjamin; Arribas, Paula ; Andújar, Carmelo ; Crampton-Platt, Alex; Vogler, Alfried P.
KeywordsBacterial symbionts
Coleoptera
Genome skimming
Preservative ethanol
Mitochondrial metagenomics
Issue DateNov-2016
PublisherWiley-Blackwell
CitationMolecular Ecology Resources 16(6): 1365-1377 (2016)
AbstractField‐collected specimens of invertebrates are regularly killed and preserved in ethanol, prior to DNA extraction from the specimens, while the ethanol fraction is usually discarded. However, DNA may be released from the specimens into the ethanol, which can potentially be exploited to study species diversity in the sample without the need for DNA extraction from tissue. We used shallow shotgun sequencing of the total DNA to characterize the preservative ethanol from two pools of insects (from a freshwater habitat and terrestrial habitat) to evaluate the efficiency of DNA transfer from the specimens to the ethanol. In parallel, the specimens themselves were subjected to bulk DNA extraction and shotgun sequencing, followed by assembly of mitochondrial genomes for 39 of 40 species in the two pools. Shotgun sequencing from the ethanol fraction and read‐matching to the mitogenomes detected ~40% of the arthropod species in the ethanol, confirming the transfer of DNA whose quantity was correlated to the biomass of specimens. The comparison of diversity profiles of microbiota in specimen and ethanol samples showed that ‘closed association’ (internal tissue) bacterial species tend to be more abundant in DNA extracted from the specimens, while ‘open association’ symbionts were enriched in the preservative fluid. The vomiting reflex of many insects also ensures that gut content is released into the ethanol, which provides easy access to DNA from prey items. Shotgun sequencing of DNA from preservative ethanol provides novel opportunities for characterizing the functional or ecological components of an ecosystem and their trophic interactions.
Publisher version (URL)https://doi.org/10.1111/1755-0998.12539
URIhttp://hdl.handle.net/10261/183891
DOI10.1111/1755-0998.12539
ISSN1755-098X
E-ISSN1755-0998
Appears in Collections:(IPNA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.