English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/183458
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Water-gas shift reaction on Pt/Ce1- xTixO 2-δ: The effect of Ce/Ti ratio

AuthorsPetallidou, Klito C.; Polychronopoulou, Kyriaki; Boghosian, Soghomon; García Rodríguez, Sergio ; Efstathiou, Angelos
Issue Date5-Dec-2013
PublisherAmerican Chemical Society
CitationJournal of Physical Chemistry C 117(48): 25467-25477 (2013)
AbstractPt nanoparticles (1.2–2.0 nm size) supported on Ce1–xTixO2−δ (x = 0, 0.2, 0.5, 0.8, and 1.0) carriers synthesized by the citrate sol–gel method were tested toward the water–gas shift (WGS) reaction in the 200–350 °C range. A deep insight into the effect of two structural parameters, the chemical composition of support (Ce/Ti atom ratio), and the Pt particle size on the catalytic performance of Pt-loaded catalysts was realized after employing in situ X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and HAADF/STEM, scanning electron microscopy (SEM), in situ Raman and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopies under different gas atmospheres, H2 temperature-programmed reduction (H2-TPR), and temperature-programmed desorption (NH3-TPD and CO2-TPD) techniques. The 0.5 wt % Pt/Ce0.8Ti0.2O2−δ solid (dPt = 1.7 nm) was found to be by far the best catalyst among all the other solids investigated. In particular, at 250 °C the CO conversion over Pt/Ce0.8Ti0.2O2−δ was increased by a factor of 2.5 and 1.9 compared to Pt/TiO2 and Pt/CeO2, respectively. The catalytic superiority of the Pt/Ce0.8Ti0.2O2−δ solid is the result of the support’s (i) robust morphology preserved during the WGS reaction, (ii) moderate acidity and basicity, and (iii) better reducibility at lower temperatures and the significant reduction of “coking” on the Pt surface and of carbonate accumulation on the Ce0.8Ti0.2O2−δ support. Several of these properties largely influenced the reactivity of sites (k, s–1) at the Pt–support interface. In particular, the specific WGS reaction rate at 200 °C expressed per length of the Pt–support interface (μmol CO cm–1 s–1) was found to be 2.2 and 4.6 times larger on Pt supported on Ce0.8Ti0.2O2−δ (Ti4+-doped CeO2) compared to TiO2 and CeO2 alone, respectively.
Publisher version (URL)https://doi.org/10.1021/jp406059h
URIhttp://hdl.handle.net/10261/183458
DOI10.1021/jp406059h
ISSN1932-7447
E-ISSN1932-7455
Appears in Collections:(ICP) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.