English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/183418
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

The COMBREX Project: Design, Methodology, and Initial Results

AuthorsAnton, Brian P.; Yi-Chien Chang; Brown, Peter J.; Choi, Han-Pil; Faller, Lina L.; Guleria, Jyotsna; Hu, Zhenjun; Klitgord, Niels; Levy-Moonshine, Ami; Maksad, Almaz; Mazumdar, Varun; Mark McGettrick; Osmani, Lais; Pokrzywa, Revonda; Rachlin, John; Swaminathan, Rajeswari; Allen, Benjamin; Housman, Genevieve; Monahan, Caitlin; Rochussen, Krista; Tao, Kevin; Bhagwat, Ashok S.; Brenner, Steven E.; Columbus, Linda; Crécy-Lagard, Valerié de; Ferguson, Donald; Fomenkov, Alexey; Gadda, Giovanni; Morgan, Richard D.; Osterman, Andrei L.; Rodionov, Dmitry A.; Rodionova, Irina A.; Rudd, Kenneth E.; Söll, Dieter; Spain, James; Xu, Shuang-yong; Bateman, Alex; Blumenthal, Robert M.; Bollinger, J. Martin; Chang, Woo-Suk; Ferrer, Manuel ; Friedberg, Iddo; Galperin, Michael Y.; Gobeill, Julien; Haft, Daniel; Hunt, John; Karp, Peter; Klimke, William; Krebs, Carsten; Macelis, Dana; Madupu, Ramana; Martín, María J.; Miller, Jeffrey H.; O’Donovan, Claire; Palsson, Bernhard; Ruch, Patrick; Setterdahl, Aaron; Sutton, Granger; Tate, John; Yakunin, Alexander F.; Tchigvintsev, Dmitri; Plata, Germán; Hu, Jie; Greiner, Russell; Horn, David; Sjölander, Kimmen; Salzberg, Steven L.; Vitkup, Dennis; Letovsky, Stanley; Segre, Daniel; DeLisi, Charles; Roberts, Richard J.; Steffen, Martin; Kasif, Simon
Issue Date27-Aug-2013
PublisherPublic Library of Science
CitationPlos Biology 11(8): e1001638 (2013)
AbstractPrior to the “genomic era,” when the acquisition of DNA sequence involved significant labor and expense, the sequencing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an experimentally determined phenotype or biochemical activity. Now that DNA sequencing has become orders of magnitude faster and less expensive, focus has shifted to sequencing entire genomes. Since biochemistry and genetics have not, by and large, enjoyed the same improvement of scale, public sequence repositories now predominantly contain putative protein sequences for which there is no direct experimental evidence of function. Computational approaches attempt to leverage evidence associated with the ever-smaller fraction of experimentally analyzed proteins to predict function for these putative proteins. Maximizing our understanding of function over the universe of proteins in toto requires not only robust computational methods of inference but also a judicious allocation of experimental resources, focusing on proteins whose experimental characterization will maximize the number and accuracy of follow-on predictions.
Description© 2013 Brian P. et al.
Publisher version (URL)https://doi.org/10.1371/journal.pbio.1001638
URIhttp://hdl.handle.net/10261/183418
DOI10.1371/journal.pbio.1001638
ISSN1544-9173
E-ISSN1545-7885
Appears in Collections:(ICP) Artículos
Files in This Item:
File Description SizeFormat 
Combrex_Anton_2013.PDF508,12 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.