English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/18209
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorRamos Vega, Daniel-
dc.contributor.authorTamayo de Miguel, Francisco Javier-
dc.contributor.authorMertens, Johann-
dc.contributor.authorCalleja, Montserrat-
dc.contributor.authorZaballos, Ángel-
dc.date.accessioned2009-10-30T11:43:18Z-
dc.date.available2009-10-30T11:43:18Z-
dc.date.issued2006-11-30-
dc.identifier.citationJournal of Applied Physics 100, 106105 (2006)en_US
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10261/18209-
dc.description.abstractResonant microcantilevers are being actively investigated as sensitive mass sensors for biological detection. By performing experiments of adsorption of the bacteria Escherichia coli on singly clamped microcantilevers, we demonstrate that the effect of the added mass is not the only and may not be the main origin of the response of these sensors. The experiments show that the magnitude and sign of resonance frequency shift both depend critically on the distribution of the adsorbed bacterial cells on the cantilever. We relate this behavior to the added mass that shifts the resonance to lower frequencies and the higher effective flexural rigidity of the cantilever due to the bacteria stiffness that shifts the resonance to higher frequencies. Both effects can be uncoupled by positioning the cells where each effect dominates, near the free cantilever end for measuring the added mass or near the clamping for measuring the increase of flexural rigidity.en_US
dc.description.sponsorshipOne of the authors (D.R.) acknowledges the fellowship funded by the Autonomic Community of Madrid. This work was supported by the Spanish National Research Council (CSIC), Project No. 200550M056.en_US
dc.format.extent93320 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rightsopenAccessen_US
dc.subjectCellular biophysicsen_US
dc.subjectMicromechanicalen_US
dc.subjectResonatorsen_US
dc.subjectMicroorganismsen_US
dc.subjectAdsorptionen_US
dc.subjectCantileversen_US
dc.subjectMicrosensorsen_US
dc.subjectBiological techniquesen_US
dc.subjectNanotechnologyen_US
dc.subjectBiomechanicsen_US
dc.subjectBiosensorsen_US
dc.titleOrigin of the response of nanomechanical resonators to bacteria adsorptionen_US
dc.typeartículoen_US
dc.identifier.doi10.1063/1.2370507-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://link.aip.org/link/?JAPIAU/100/106105/1en_US
dc.relation.publisherversionhttp://dx.doi.org/10.1063/1.2370507en_US
Appears in Collections:(IMN-CNM) Artículos
(CNB) Artículos
Files in This Item:
File Description SizeFormat 
Ramos, D. et al J.Appl. Phys._100_2006.pdf91,13 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.