Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181569
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Strain-balanced type-II superlattices for efficient multi-junction solar cells

AutorGonzalo Martín, Alicia CSIC ORCID; Utrilla, Antonio D.; Reyes, Daniel F.; Braza, Verónica; Llorens Montolio, José Manuel CSIC ORCID; Fuertes Marrón, D.; Alén, Benito CSIC ORCID; Ben, Teresa; González, David; Guzmán, Álvaro; Hierro, Adrián; Ulloa, J. M.
Fecha de publicación21-jun-2017
EditorNature Publishing Group
CitaciónScientific Reports 7: 4012 (2017)
ResumenMulti-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.
Versión del editorhttps://doi.org/10.1038/s41598-017-04321-4
URIhttp://hdl.handle.net/10261/181569
DOI10.1038/s41598-017-04321-4
E-ISSN2045-2322
Aparece en las colecciones: (IMN-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Strain-balanced type-II_Gonzalo.pdf1,89 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

1
checked on 19-abr-2024

SCOPUSTM   
Citations

22
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

20
checked on 25-feb-2024

Page view(s)

215
checked on 18-abr-2024

Download(s)

188
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons