Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181493
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorSaha, Bivases_ES
dc.contributor.authorPérez Taborda, Jaime Andréses_ES
dc.contributor.authorBahk, Je-Hyeonges_ES
dc.contributor.authorKoh, Yee Ruies_ES
dc.contributor.authorShakouri, Alies_ES
dc.contributor.authorMartín-González, Marisoles_ES
dc.contributor.authorSands, Timothyes_ES
dc.date.accessioned2019-05-16T09:30:42Z-
dc.date.available2019-05-16T09:30:42Z-
dc.date.issued2018-02-15-
dc.identifier.citationPhysical Review - Section B - Condensed Matter 97(8): 085301 (2018)es_ES
dc.identifier.issn2469-9950-
dc.identifier.urihttp://hdl.handle.net/10261/181493-
dc.description.abstractScandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n-type semiconductors and exhibit a large thermoelectric power factor of∼3.5 × 10−3 W/m-K2 at 600–800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type Sc1−xMgxN thin film alloys with low MgxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type Sc1−xMgxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type Sc1−xMgxN thin film alloys exhibit a maximum thermoelectric power factor of ∼0.8 × 10−3 W/m-K2 at 850 K. The thermoelectric properties are tunable by adjusting the MgxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n-type ScN to inside the valence band in highly hole-doped p-type Sc1−xMgxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of Sc1−xMgxN thin-film alloys, without affecting the power factor for improved thermoelectric performancees_ES
dc.description.sponsorshipB.S. and T.D.S. acknowledge financial support by the National Science Foundation and U.S. Department of Energy (Grant No. CBET-1048616). M.M.G. acknowledges financial support from ERC Starting Grant NanoTEC 240497, and the INFANTE Project 201550E072. J.A.P.T. acknowledges the FPI from the project PHOMENTA (Grant No. MAT2011- 27911).es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/240497es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleTemperature-dependent thermal and thermoelectric properties of n -type and p -type S c 1 − x M g x Nes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1103/PhysRevB.97.085301-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.97.085301es_ES
dc.identifier.e-issn2469-9969-
dc.contributor.funderNational Science Foundation (US)es_ES
dc.contributor.funderDepartment of Energy (US)es_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.contributor.funderConsejo Superior de Investigaciones Científicas (España)es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003339es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000015es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.grantfulltextopen-
item.languageiso639-1en-
Aparece en las colecciones: (IMN-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Temperature-dependent thermal_Saha.pdf2,27 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

34
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

32
checked on 22-feb-2024

Page view(s)

188
checked on 23-abr-2024

Download(s)

144
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.