English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/181398
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMalvar, Óscares_ES
dc.contributor.authorRuz Martínez, José Jaimees_ES
dc.contributor.authorKosaka, Priscila M.es_ES
dc.contributor.authorDomínguez, Carmen M.es_ES
dc.contributor.authorGil-Santos, Eduardoes_ES
dc.contributor.authorCalleja, Montserrates_ES
dc.contributor.authorTamayo de Miguel, Francisco Javieres_ES
dc.date.accessioned2019-05-14T10:44:37Z-
dc.date.available2019-05-14T10:44:37Z-
dc.date.issued2016-11-11-
dc.identifier.citationNature Communications 7: 13452 (2016)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/181398-
dc.description.abstractThe identification of species is a fundamental problem in analytical chemistry and biology. Mass spectrometers identify species by their molecular mass with extremely high sensitivity (<10−24 g). However, its application is usually limited to light analytes (<10−19 g). Here we demonstrate that by using nanomechanical resonators, heavier analytes can be identified by their mass and stiffness. The method is demonstrated with spherical gold nanoparticles and whole intact E. coli bacteria delivered by electrospray ionization to microcantilever resonators placed in low vacuum at 0.1 torr. We develop a theoretical procedure for obtaining the mass, position and stiffness of the analytes arriving the resonator from the adsorption-induced eigenfrequency jumps. These results demonstrate the enormous potential of this technology for identification of large biological complexes near their native conformation, a goal that is beyond the capabilities of conventional mass spectrometers.es_ES
dc.description.sponsorshipWe acknowledge the service from the X-SEM Laboratory at IMM and funding from MINECO under project CSIC13-4E-1794 with support from EU (FEDER, FSE). This work was supported by the Spanish Science Ministry (MINECO) through project MAT2012-36197 and by European Research Council through NANOFORCELLS project (ERC-StG-2011-278860).es_ES
dc.language.isoenges_ES
dc.publisherNature Publishing Groupes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/278860es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleMass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonatorses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1038/ncomms13452-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1038/ncomms13452es_ES
dc.identifier.e-issn2041-1723-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(IMN-CNM) Artículos
Files in This Item:
File Description SizeFormat 
Mass and stiffness_Malvar.pdf1,17 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.