English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/181178
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Efficient nitrogen-doping and structural control of hierarchical carbons using unconventional precursors in the form of deep eutectic solvents

AuthorsLópez-Salas, N.; Gutiérrez, María C. ; Ania, Conchi O.; Fierro, José Luis G.; Ferrer, M. Luisa ; Monte, Francisco del
Issue Date29-Jul-2014
PublisherRoyal Society of Chemistry
CitationJournal of Materials Chemistry A 2(41): 17387-17399 (2014)
AbstractSince the seminal work by Pekala in 1989, polycondensation of phenol derivatives with formaldehyde and subsequent carbonization has been one of the most used procedures for preparation of porous carbons. Nitrogen-doped carbons have also been obtained through this approach only by using nitrogen-rich precursors. The list of the most commonly used nitrogen-rich precursors includes melamine, urea, 3-hydroxypyridine, 3-aminophenol and lysine, and despite a few of them can be used in a single fashion, they typically need to be co-condensed with a second precursor. Nitrogen-rich precursors different from these ones have been used rarely because their molecular structure does not favor the nucleophilic substitution through which polycondensation takes place-e.g. p-nitrophenol. This is by no means a trivial issue because, on the one hand, these precursors cannot form a cross-linked network by themselves, and on the other hand, it may be difficult to encompass their different reaction kinetics when combined with more reactive precursors. This is also the situation for other precursors with an amphiphilic molecular structure that could be of interest to control the structure of the resulting porous carbons-e.g. 4-hexylresorcinol. In this work, we have used deep eutectic solvents composed of resorcinol, 4-hexylresorcinol, p-nitrophenol and choline chloride for the preparation of nitrogen-doped carbon monoliths with a hierarchical porous structure. Carbon conversions ranged from 64 to 50%-depending on the carbonization temperature-despite using three different carbon precursors for co-condensation and two of them were uncommon. The nitrogen content ranged from 4.9 to 3.0 wt%, revealing an excellent nitrogen-doping efficiency for p-nitrophenol when used in the form of DES. Finally, the use of 4-hexylresorcinol controlled the formation of a narrow microporosity that, in combination with the nitrogen functionalities, provided a remarkable CO2-sorption capability to the resulting carbons.
Publisher version (URL)http://doi.org/10.1039/C4TA03266G
URIhttp://hdl.handle.net/10261/181178
DOI10.1039/c4ta03266g
ISSN2050-7488
E-ISSN2050-7496
Appears in Collections:(ICP) Artículos
(INCAR) Artículos
(ICMM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.