English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/180692
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration

AuthorsRozada Rodríguez, Rubén ; Paredes Nachón, Juan Ignacio ; López, María J. ; Villar Rodil, Silvia ; Cabria, Iván; Alonso, Julio A.; Martínez Alonso, Amelia ; Díez Tascón, Juan Manuel
Issue Date16-Dec-2014
PublisherRoyal Society of Chemistry (UK)
CitationNanoscale 7(6): 2374-2390 (2015)
AbstractHigh temperature annealing is the only method known to date that allows the complete repair of a defective lattice of graphenes derived from graphite oxide, but most of the relevant aspects of such restoration processes are poorly understood. Here, we investigate both experimentally (scanning probe microscopy) and theoretically (molecular dynamics simulations) the thermal evolution of individual graphene oxide sheets, which is rationalized on the basis of the generation and the dynamics of atomic vacancies in the carbon lattice. For unreduced and mildly reduced graphene oxide sheets, the amount of generated vacancies was so large that they disintegrated at 1773–2073 K. By contrast, highly reduced sheets survived annealing and their structure could be completely restored at 2073 K. For the latter, a minor atomic-sized defect with six-fold symmetry was observed and ascribed to a stable cluster of nitrogen dopants. The thermal behavior of the sheets was significantly altered when they were supported on a vacancy-decorated graphite substrate, as well as for the overlapped/stacked sheets. In these cases, a net transfer of carbon atoms between neighboring sheets via atomic vacancies takes place, affording an additional healing process. Direct evidence of sheet coalescence with the step edge of the graphite substrate was also gathered from experiments and theory.
Publisher version (URL)https://doi.org/10.1039/C4NR05816J
Appears in Collections:(INCAR) Artículos
Files in This Item:
File Description SizeFormat 
From_graphene_oxide_graphene_Rozada.pdf1,4 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.