Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/180671
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness

AutorCejudo, Francisco Javier CSIC ORCID; Ojeda, Valle; Delgado-Requerey, Víctor; González, Maricruz CSIC ORCID ; Pérez-Ruiz, Juan Manuel CSIC
Fecha de publicación2019
EditorFrontiers Media
CitaciónFrontiers in Plant Science, 10: 380 (2019)
ResumenLight is probably the most important environmental stimulus for plant development. As sessile organisms, plants have developed regulatory mechanisms that allow the rapid adaptation of their metabolism to changes in light availability. Redox regulation based on disulfide-dithiol exchange constitutes a rapid and reversible post-translational modification, which affects protein conformation and activity. This regulatory mechanism was initially discovered in chloroplasts when it was identified that enzymes of the Calvin-Benson cycle (CBC) are reduced and active during the day and become rapidly inactivated by oxidation in the dark. At present, the large number of redox-sensitive proteins identified in chloroplasts extend redox regulation far beyond the CBC. The classic pathway of redox regulation in chloroplasts establishes that ferredoxin (Fdx) reduced by the photosynthetic electron transport chain fuels reducing equivalents to the large set of thioredoxins (Trxs) of this organelle via the activity of a Fdx-dependent Trx reductase (FTR), hence linking redox regulation to light. In addition, chloroplasts harbor an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. The presence in chloroplasts of this NADPH-dependent redox system raises the question of the functional relationship between NTRC and the Fdx-FTR-Trx pathways. Here, we update the current knowledge of these two redox systems focusing on recent evidence showing their functional interrelationship through the action of the thioldependent peroxidase, 2-Cys peroxiredoxin (2-Cys Prx). The relevant role of 2-Cys Prxs in chloroplast redox homeostasis suggests that hydrogen peroxide may exert a key function to control the redox state of stromal enzymes. Indeed, recent reports have shown the participation of 2-Cys Prxs in enzyme oxidation in the dark, thus providing an explanation for the long-lasting question of photosynthesis deactivation during the light-dark transition.
Versión del editorhttp://dx.doi.org/10.3389/fpls.2019.00380
URIhttp://hdl.handle.net/10261/180671
DOI10.3389/fpls.2019.00380
Aparece en las colecciones: (IBVF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
fpls-10-00380 (1).pdf275,35 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

39
checked on 19-abr-2024

SCOPUSTM   
Citations

54
checked on 23-abr-2024

WEB OF SCIENCETM
Citations

53
checked on 25-feb-2024

Page view(s)

341
checked on 24-abr-2024

Download(s)

211
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.