English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/18019
Title: Dynamics of defects in the vector complex Ginzburg-Landau equation
Authors: Hoyuelos, Miguel; Hernández-García, Emilio ; Colet, Pere ; San Miguel, Maxi
Keywords: Vector Ginzburg-Landau equation
Topological defects
Spatiotemporal chaos
Optical instabilities
Light polarization
Issue Date: 3-Jan-2003
Publisher: Elsevier
Citation: Physica D 174(1-4): 176-197 (2003)
Abstract: Coupled Ginzburg-Landau equations appear in a variety of contexts involving instabilities in oscillatory media. When the relevant unstable mode is of vectorial character (a common situation in nonlinear optics), the pair of coupled equations has special symmetries and can be written as a vector complex Ginzburg-Landau (CGL)equation. Dynamical properties of localized structures of topological character in this vector-field case are considered. Creation and annihilation processes of different kinds of vector defects are described, and some of them interpreted in theoretical terms. A transition between different regimes of spatiotemporal dynamics is described.
Description: ArXiv pre-print: http://arxiv.org/abs/nlin.PS/0110017
22 pages, 17 figures, 1 appendix.-- Pre-print archive.
Publisher version (URL): http://dx.doi.org/10.1016/S0167-2789(02)00690-5
URI: http://hdl.handle.net/10261/18019
DOI: 10.1016/S0167-2789(02)00690-5
ISSN: 0167-2789
Appears in Collections:(IMEDEA) Artículos
(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
vcglsubmitted.pdf890,51 kBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.