Please use this identifier to cite or link to this item:
Título : Dynamics of defects in the vector complex Ginzburg-Landau equation
Autor : Hoyuelos, Miguel, Hernández-García, Emilio, Colet, Pere, San Miguel, Maxi
Palabras clave : Vector Ginzburg-Landau equation
Topological defects
Spatiotemporal chaos
Optical instabilities
Light polarization
Fecha de publicación : 3-Jan-2003
Editor: Elsevier
Resumen: Coupled Ginzburg-Landau equations appear in a variety of contexts involving instabilities in oscillatory media. When the relevant unstable mode is of vectorial character (a common situation in nonlinear optics), the pair of coupled equations has special symmetries and can be written as a vector complex Ginzburg-Landau (CGL)equation. Dynamical properties of localized structures of topological character in this vector-field case are considered. Creation and annihilation processes of different kinds of vector defects are described, and some of them interpreted in theoretical terms. A transition between different regimes of spatiotemporal dynamics is described.
Descripción : ArXiv pre-print:
22 pages, 17 figures, 1 appendix.-- Pre-print archive.
Versión del editor:
ISSN: 0167-2789
DOI: 10.1016/S0167-2789(02)00690-5
Citación : Physica D 174(1-4): 176-197 (2003)
Appears in Collections:(IMEDEA) Artículos
(IFISC) Artículos

Files in This Item:
File Description SizeFormat 
vcglsubmitted.pdf890,51 kBAdobe PDFView/Open
Show full item record

Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.