English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/17968
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Phenolic Compounds and Fatty Acids from Acorns (Quercus spp.), the Main Dietary Constituent of Free-Ranged Iberian Pigs

AuthorsCantos Villar, Emma; Espín de Gea, Juan Carlos ; López-Bote, Clemente; Hoz, Lorenzo de la; Tomás Barberán, Francisco ; Ordóñez, Juan A.
Fatty acid
Iberian pig
Quercus spp
Issue Date10-Sep-2003
PublisherAmerican Chemical Society
CitationJournal of Agricultural and Food Chemistry 51(21): 6248-6255 (2003)
AbstractThe aim of the present work was to identify and quantify the phenolic compounds and fatty acids in acorns from Quercus ilex, Quercus rotundifolia, and Quercus suber. The concentration of oleic acid was >63% of total fatty acids in all cases, followed by palmitic and linoleic acids at similar concentrations (12−20%). The concentrations of α-tocopherol in Q. rotundifolia, Q. ilex, and Q. suber were 19, 31, and 38 mg/kg of dry matter (DM), respectively, whereas the concentrations of γ-tocopherol were 113, 66, and 74 mg/kg of DM, respectively. Thirty-two different phenolic compounds were distinguished. All of them were gallic acid derivatives, in the form of either galloyl esters of glucose, combinations of galloyl and hexahydroxydiphenoyl esters of glucose, tergallic O- or C-glucosides, or ellagic acid derivatives. Several tergallic acid C-glucosides were also present in the extracts obtained from Q. suber. Acorns from Q. ilex and Q. rotundifolia showed similar polyphenol patterns mainly with gallic acid-like spectra. Chromatograms of Q. suber showed mainly polyphenols with ellagic acid-like spectra. Valoneic acid dilactone was especially abundant in Q. suber skin. The contribution of skin to the total phenolics of the acorn was relatively small in Q. rotundifolia and Q. ilex but relatively high in Q. suber. Skin extracts from Q. suber, Q. rotundifolia, and Q. ilex showed 1.3, 1.4, and 1.0 antioxidant efficiencies, respectively (compared to that of butylhydroxyanisole). Endosperm extracts showed lower capacity to prevent lipid peroxidation than skin extracts.
Description8 pages, 6 figures, 4 tables.
Publisher version (URL)http://dx.doi.org/10.1021/jf030216v
Appears in Collections:(CEBAS) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.