Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/17892
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorJiménez, Aurora-
dc.contributor.authorClapés Saborit, Pere-
dc.contributor.authorCrehuet, Ramón-
dc.date.accessioned2009-10-21T11:06:46Z-
dc.date.available2009-10-21T11:06:46Z-
dc.date.issued2009-01-26-
dc.identifier.citationChemistry - A European Journal 15(6): 1422-1428 (2009)en_US
dc.identifier.issn0947-6539-
dc.identifier.urihttp://hdl.handle.net/10261/17892-
dc.description7 pages, 5 figures, 2 tables.-- PMID: 19115296 [PubMed].-- Available online Dec 29, 2008.en_US
dc.description.abstractThe mobility of rhamnulose-1-phosphate aldolase (RhuA) was analysed with a normal mode description and high level calculations on models of the active site. We report the connection between the mobility and the chemical properties of the active site, and compare them to a closely related enzyme, fuculose-1-phosphate aldolase (FucA). Calculations show that the different coordination number for the zinc ion, reported in the crystal structures of RhuA and FucA, was due to a different spatial arrangement of the residues, not to their different chemical nature. Moreover, the metal coordination change is correlated with activity. The domain mobility of the enzyme can reshape the active site of RhuA into the arrangement found in the FucA structure, and vice-versa. This has a direct influence on the energy barrier for the aldol reaction catalyzed by these enzymes, thus showing a coupling of the domain movements and the catalytic effects. Hence domain movements and the coordination chemistry of the active site metal suggest an explanation of why these enzymes have similar experimental turnover rates.en_US
dc.description.sponsorshipR.C. thanks the Spanish Ramón y Cajal Program for financial support, and A.J. thanks the CSIC and the European Social Fund for her I3P fellowship. We acknowledge financial support from the MEC (Grant CTQ2006–01345/BQU) and the Generalitat de Catalunya (Grant 2005SGR00111). This research has been partly performed by using the CESCA resources.en_US
dc.format.extent918459 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.publisherJohn Wiley & Sonsen_US
dc.rightsclosedAccessen_US
dc.subjectDensity functional calculationsen_US
dc.subjectEnzyme catalysisen_US
dc.subjectMetalloproteinsen_US
dc.subjectProtein flexibilityen_US
dc.subjectReaction mechanismsen_US
dc.titleProtein flexibility and metal coordination changes in DHAP-dependent aldolasesen_US
dc.typeartículoen_US
dc.identifier.doi10.1002/chem.200801223-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://dx.doi.org/10.1002/chem.200801223en_US
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeartículo-
Aparece en las colecciones: (IQAC) Artículos
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

6
checked on 12-abr-2024

WEB OF SCIENCETM
Citations

6
checked on 29-feb-2024

Page view(s)

416
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.