English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/177888
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Efficient and simplified nanomechanical analysis of intrinsically disordered proteins

AuthorsFernandez Ramirez, M.C.; Hervás, Rubén ; Galera-Prat, Albert ; Laurents, D.V. ; Carrión-Vázquez, Mariano Sixto
Issue Date2018
CitationNanoscale 10: 16857- 16867 (2018)
AbstractIntrinsically disordered proteins (IDPs) lack a tertiary structure. Amyloidogenic IDPs (aIDPs) in particular have attracted great interest due to their implication in several devastating diseases as well as in critical biological functions. However, the conformational changes that trigger amyloid formation in aIDPs are largely unknown. aIDPs' conformational polymorphism at the monomer level encumbers their study using bulk techniques. Single-molecule techniques like atomic force microscopy-based single-molecule force spectroscopy represent a promising approach and a >carrier-guest> strategy, in which the protein of interest is mechanically protected, was developed to overcome the spurious signals from the noisy proximal region. However, since the carrier and single-molecule markers have similar mechanostabilities, their signals can intermingle in the force-extension recordings, making peak selection and analysis very laborious, cumbersome and prone to error for the non-expert. Here we have developed a new carrier, the c8C module from the CipC scaffoldin, with a higher mechanostability so that the signals from the protected protein will appear at the end of the recordings. This assures an accurate, more efficient and expert-independent analysis, simplifying both the selection and analysis of the single-molecule data. Furthermore, this modular design can be integrated into any SMFS polyprotein-based vector, thus constituting a useful utensil in the growing toolbox of protein nanomechanics.
Identifiersdoi: 10.1039/c8nr02785d
issn: 2040-3372
Appears in Collections:(IC) Artículos
(IQFR) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.