English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/175555
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1

AuthorsFernández Rodríguez, Matilde; Corral-Lugo, Andrés; Krell, Tino
Issue Date2018
PublisherBlackwell Publishing
CitationEnvironmental Microbiology 20: 4230- 4244 (2018)
AbstractThe interference of plant compounds with bacterial quorum sensing (QS) is a major mechanism through which plants and bacteria communicate. However, little is known about the modes of action and effects on signal integrity during this type of communication. We have recently shown that the plant compound rosmarinic acid (RA) specifically binds to the Pseudomonas aeruginosa RhlR QS receptor. To determine the effect of RA on expression patterns, we carried out global RNA-seq analysis. The results show that RA induces the expression of 128 genes, amongst which many virulence factor genes. RA triggers a broad QS response because 88% of the induced genes are known to be controlled by QS, and because RA stimulated genes were found to be involved in all four QS signalling systems within P. aeruginosa. This finding was confirmed through the analysis of transcriptional fusions transferred to wt and a rhlI/lasI double mutant. RA did not induce gene expression in the rhlI/lasI/rhlR triple mutant indicating that the effects observed are due to the RA-RhlR interaction. Furthermore, RA induced seven sRNAs that were all encoded in regions close to QS and/or RA induced genes. This work significantly enhances our understanding of plant bacteria interaction.
Identifiersdoi: 10.1111/1462-2920.14301
issn: 1462-2920
Appears in Collections:(EEZ) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.