English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/174620
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Título

Dietary canthaxanthin reduces xanthophyll uptake and red coloration in adult red-legged partridges

AutorAlonso-Álvarez, Carlos ; García-de Blas, Esther ; Mateo, Rafael
Palabras claveSexual selection
Poultry diet
Sexual signals
Dietary pigments
Gallinacean
Competitive carotenoid absorption
Fecha de publicación2018
EditorCompany of Biologists
CitaciónJournal of Experimental Biology 221(pt22): jeb185074 (2018)
ResumenCarotenoids give color to conspicuous animal signals that are often the product of sexual selection. Knowledge of the mechanisms involved in carotenoid-based signaling is critical to understanding how these traits evolve. However, these mechanisms remain only partially understood. Carotenoids are usually viewed as scarce dietary antioxidants whose allocation to ornaments may trade off against health. This trade-off would ensure its reliability as a signal of individual quality. In the case of red (keto)carotenoids, the literature suggests that some species may show constraints in their uptake. Canthaxanthin is one of the most common ketocarotenoids in red ornaments of animals. It is often commercially used as a dietary supplement to obtain redder birds (e.g. poultry). We increased the dietary canthaxanthin levels in captive red-legged partridges (Alectoris rufa). This species shows red non-feathered parts mostly pigmented by another common ketocarotenoid: astaxanthin. We studied the impact on the uptake of carotenoids and vitamins and, finally, on coloration. We also tested the potential protective effect of canthaxanthin when exposing birds to a free radical generator (diquat). Canthaxanthin did not apparently protect birds from oxidative stress, but interfered with the absorption of yellow carotenoids (lutein and zeaxanthin). Zeaxanthin is a precursor of astaxanthin in enzymatic pathways, and their levels in tissues and eggs were lower in canthaxanthin-supplied birds. This led to lower astaxanthin levels in ornaments and paler coloration. As far as we know, this is the first report of a carotenoid supplementation decreasing animal coloration. The results have implications for understanding carotenoid-based signaling evolution, but also for improving husbandry/experimental procedures.
URIhttp://hdl.handle.net/10261/174620
Identificadoresdoi: 10.1242/jeb.185074
e-issn: 1477-9145
issn: 0022-0949
Aparece en las colecciones: (IREC) Artículos
(MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.