English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/174428
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Título

Predictor weighting and geographical background delimitation: two synergetic sources of uncertainty when assessing species sensitivity to climate change

AutorAcevedo, Pelayo ; Jiménez Valverde, Alberto ; Lobo, Jorge M. ; Real, Raimundo
Palabras claveSpatial factors
Species distribution models
Spatial structure
Historical factors
Extent
European wild mammals
Fecha de publicación2017
EditorSpringer Nature
CitaciónClimatic Change 145(1-2): 131-143 (2017)
ResumenAn accurate estimation of the expected consequences of climate change requires the proper quantification of the effect of climate on current species distributions. Several interrelated sources of uncertainty may affect the likelihood of species distribution models (SDMs) to determine the relative importance of climate. Our aim was to assess the relationship between the influence of geographical background (GB) delimitation and that of subtracting the non-climate effects from the weight of climatic predictors to estimate the combined influence of these two factors on predictions in climate change scenarios. The distribution of 40 endemic mammals in Western Europe have been modeled by (i) using the whole territory of Western Europe as the GB and also specifically delimiting the GB with a geographical criterion and (ii) considering climatic predictors in addition to other non-climatic variables in order to extract the pure effect of climate. The models were used to quantify species’ sensitivity to new climate scenarios. Results showed discrepancies among the analytical approaches. Changes in distribution obtained by considering the pure effect of climate were lower than those obtained by considering the apparent effect, and GB-delimited models yielded higher changes than those trained in Western Europe. We evidence that climate weighting and GB delimitation have dramatic influences on the projections of models when transferred to new scenarios. We emphasize that scientific studies and derived adaptation policies based on SDMs without an explicit consideration of the GB and the weighting of the climate-related variables may be misleading and in need of revision.
URIhttp://hdl.handle.net/10261/174428
Identificadoresdoi: 10.1007/s10584-017-2082-1
e-issn: 1573-1480
issn: 0165-0009
Aparece en las colecciones: (IREC) Artículos
(MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.