Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/173854
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorBoonma, Kittiphon-
dc.contributor.authorKumar, Ajay-
dc.contributor.authorGarcía-Castellanos, Daniel-
dc.contributor.authorJimenez-Munt, Ivone-
dc.contributor.authorFernández Ortiga, Manel-
dc.date.accessioned2019-01-09T13:56:14Z-
dc.date.available2019-01-09T13:56:14Z-
dc.date.issued2018-04-08-
dc.identifier.citationAmerican Geophysical Union, Fall Meeting 2018: T43G-0508 (2018)-
dc.identifier.urihttp://hdl.handle.net/10261/173854-
dc.description.abstractThe buoyancy of the lithospheric mantle relative to the asthenospheric mantle is the driving force of plate subduction and mantle delamination (the peeling off of the lithospheric mantle from the crust and its detachment and sinking into the asthenospheric mantle). Both mechanisms are often invoked for the evolution of collision zones, yet there are still open questions about the conditions under which they take place. The higher density of the lithosphere relative to the asthenosphere is thought to lead to subduction or delamination as it sinks. However, it is true only when the densities are temperature dependent. We adopt a mineral physics viewpoint where the density depends on temperature, pressure, and composition such that lithospheric mantle can be less dense than that of the underlying asthenosphere, posing a severe problem for the initiation of delamination. The density and its pressure-temperature dependence, in the lithosphere and asthenosphere are calculated from stable mineral assemblages computed using major oxides composition based on mantle xenoliths/garnet peridotites in the (CFMAS) framework. We present a parametric study on the relationship between slab buoyancy and convergence rate using a simple 2D kinematic numerical model, incorporating thermal advection and diffusion. We consider different types of the lithospheric mantle (e.g. Archon, Tecton, Proton, and Oceanic), subducting with different convergence rate and constant angle, into the asthenosphere. Our results suggest that Oceanic, Tecton and Proton lithospheres are always negatively buoyant and maximum negative buoyancy increases with the convergence velocity whereas Archons are always positively buoyant. In case of oceanic lithosphere maximum negative buoyancy also increases with its age for a given velocity. This is a SUBITOP (674899-SUBITOP-H2020-MSCA-ITN-2015) and MITE (CGL2014-59516) contribution.-
dc.description.sponsorshipThis is a SUBITOP (674899-SUBITOP-H2020-MSCA-ITN-2015) and MITE (CGL2014-59516) contribution.-
dc.publisherAmerican Geophysical Union-
dc.rightsclosedAccess-
dc.subjectTectonophysics-
dc.titleDependence of lithospheric slab buoyancy on composition and convergence rate: insights from a thermally-coupled kinematic model-
dc.typecomunicación de congreso-
dc.date.updated2019-01-09T13:56:14Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypecomunicación de congreso-
item.cerifentitytypePublications-
item.grantfulltextnone-
Aparece en las colecciones: (Geo3Bcn) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

206
checked on 23-abr-2024

Download(s)

29
checked on 23-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.