English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/172963
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Analysis of the neurotoxic effects of neuropathic organophosphorus compounds in adult zebrafish

AuthorsFaria, Melissa ; Fuertes, Inmaculada; Prats, Eva; Abad, José Luís; Padrós, Francesc; Gómez-Canela, Cristian ; Casas, Josefina ; Estévez, Jorge; Vilanova, Eugenio; Piña, Benjamin; Raldúa, Demetrio
KeywordsEsterases
Delayed neuropathy
Organophosphorus Compounds
Issue Date1-Dec-2018
PublisherSpringer Nature
CitationScientific Reports 8 (1): 4844 (2018)
AbstractInhibition and aging of neuropathy target esterase (NTE) by exposure to neuropathic organophosphorus compounds (OPs) can result in OP-induced delayed neuropathy (OPIDN). In the present study we aimed to build a model of OPIDN in adult zebrafish. First, inhibition and aging of zebrafish NTE activity were characterized in the brain by using the prototypic neuropathic compounds cresyl saligenin phosphate (CBDP) and diisopropylphosphorofluoridate (DFP). Our results show that, as in other animal models, zebrafish NTE is inhibited and aged by both neuropathic OPs. Then, a neuropathic concentration inhibiting NTE activity by at least 70% for at least 24 h was selected for each compound to analyze changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs) and glycerolphosphocholine (GPC) profiles. In spite to the strong inhibition of the NTE activity found for both compounds, only a mild increase in the LPCs level was found after 48 h of the exposure to DFP, and no effect were observed by CBDP. Moreover, histopathological evaluation and motor function outcome analyses failed to find any neurological abnormalities in the exposed fish. Thus, our results strongly suggest that zebrafish is not a suitable species for the development of an experimental model of human OPIDN. © 2018 The Author(s).
Publisher version (URL)10.1038/s41598-018-22977-4
URIhttp://hdl.handle.net/10261/172963
DOI10.1038/s41598-018-22977-4
Appears in Collections:(IDAEA) Artículos
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.