English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/172768
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats

AutorDomínguez-Bajo, Ana; González-Mayorga, Ankor; Guerrero, Carlos R.; Palomares, F. Javier ; García-González, Ricardo ; López-Dolado, Elisa; Serrano, María C.
Palabras claveAFM
MRI
Nanomechanics
Reduced graphene oxide
Scaffold
Spinal cord injury
Fecha de publicaciónfeb-2019
EditorElsevier
CitaciónBiomaterials 192: 461-474 (2019)
ResumenNeural diseases at the central nervous system including spinal cord injury (SCI) remain therapeutic challenges. Graphene materials are being delineated as alternative tools for neural repair. Herein, the regenerative ability of reduced graphene oxide (rGO) scaffolds to support pivotal features of neural repair at 4 months after SCI is assessed by an interdisciplinary approach. 3D randomly porous foams have been prepared in mechanical compliance with neural cells and tissues (Young's modulus of 1.3 ± 1.0 kPa) as demonstrated by atomic force microscopy techniques applied ex vivo. After implantation, the significant increase in Young's modulus caused by massive cell/protein infiltration does not alter the mechanical performance of the contralateral spinal cord but provides mechanical stability to the lesion. These aerogels appear fully vascularized and populated with neurites, some of them being myelinated excitatory axons. Clinically-inspired magnetic resonance imaging studies demonstrate that the scaffolds significantly reduce perilesional damage with respect to rats without implants and cause no compressive damage in the contralateral hemicord and rostral/caudal regions. The rGO implants do not either alter the rat spontaneous behaviour or induce toxicity in major organs. Finally, preliminary data suggest hints of rGO sheets dissociation and eventual degradation at the injured spinal cord for the first time. In summary, these 3D porous rGO scaffolds are able to induce, without any further biological functionalization, a compilation of positive effects that have been rarely described before, if ever, for any other material implanted in the injured spinal cord to date.
Versión del editorhttps://doi.org/10.1016/j.biomaterials.2018.11.024
URIhttp://hdl.handle.net/10261/172768
DOI10.1016/j.biomaterials.2018.11.024
ISSN0142-9612
E-ISSN1878-5905
ReferenciasDomínguez-Bajo, Ana; González-Mayorga, Ankor; Guerrero, Carlos R.; Palomares, F. Javier ; García-González, Ricardo ; López-Dolado, Elisa; Serrano, María C. Dataset of the publication "Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats". http://hdl.handle.net/10261/172783
Aparece en las colecciones: (ICMM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
myelinated_axons_functional_Dominguez.pdf Embargado hasta 1 de febrero de 20211,85 MBAdobe PDFVista previa
Visualizar/Abrir     Petición de una copia
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.