English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/172559
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Mapping crop calendar events and phenology-related metrics at the parcel level by object-based image analysis (OBIA) of MODIS-NDVI time-series: a case study in central california

AutorCastro, Ana Isabel de ; Six, Johan; Plant, Richard E.; Peña Barragán, José Manuel
Palabras claveCrop phenology
Cropland data layer
Curve-fitting models
TIMESAT
Seasonality imagery
Fecha de publicación6-nov-2018
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 10(11): 1745 (2018)
ResumenRemote sensing technology allows monitoring the progress of vegetation and crop phenology in large regions. Seasonal vegetation trends are commonly estimated from high temporal resolution but coarse spatial resolution satellite imagery, e.g., from MODIS-NDVI (Moderate Resolution Imaging Spectroradiometer—Normalized Difference Vegetation Index) time-series, which has usually limited their application to scenarios with few land uses or crops covering areas larger than actual parcel sizes. As an alternative, this paper proposes a general and robust procedure to map crop phenology at the level of individual crop parcels, and validates its feasibility in a complex and diverse cropland area located in central California. A first calibration phase consisted of evaluating the three curve-fitting models implemented in the TIMESAT software (i.e., asymmetric Gaussian (AG), double logistic (DL), and adaptive Savitzky–Golay (SG) filtering) and reporting the model and its settings that best adjusted to the MODIS-NDVI profile of each crop studied. Next, based on the selected crop-specific models and with a crop map previously obtained from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) multi-temporal images, the procedure mapped four crop calendar events (i.e., start, end, middle, and length of the season) and five phenology-related metrics (i.e., base, maximum, amplitude, derivatives, and integrals of the NDVI values) of the study region by object-based image analysis (OBIA) of the MODIS-NDVI time-series. To mitigate the impact of mixed pixels, the OBIA procedure was designed to automatically apply a restrictive criterion based on the coverage of MODIS-NDVI pixels in each crop parcel: (1) using only the MODIS-NDVI pixels that were placed 100% within each crop parcel (i.e., “pure” pixels); or (2) if no “pure” pixels exist in any crop parcel, using only pixels with coverage percentages greater than 50%, and in such cases, reporting the mixing percentage in the output file. The calibration phase showed that the performance of the SG filtering was superior in most crops, with the exception of rice, while the AG model was intermediate in all of the cases. Differences between the dates of the start and end of the season that were observed in 120 ground-truth fields and the ones estimated by the crop-specific models were in a range of 11 days (for the corn fields) and 22 days (for the vineyard fields) on average. The OBIA procedure was also validated in 240 independent parcels with “pure” MODIS-NDVI pixels, reporting 89% and 82% of accuracy when mapping the start and end of the season, respectively. Our results revealed different growth patterns of the studied crops, especially of the crop calendar events of herbaceous (i.e., corn, rice, sunflower, and tomato) and woody crops (i.e., almond, walnut, and vineyard), of the NDVI derivatives of rice and the other studied herbaceous crops, and of the NDVI integrals of vineyard and the other studied woody crops. The resulting maps and tables provide valuable geospatial information for every parcel over time with several applications in cropland management, irrigation scheduling, and ecosystem modeling.
Versión del editorhttps://dx.doi.org/10.3390/rs10111745
URIhttp://hdl.handle.net/10261/172559
DOI10.3390/rs10111745
E-ISSN2072-4292
Aparece en las colecciones: (IAS) Artículos
(ICA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
remotesensing-10-01745.pdf14,68 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.