English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/172479
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Título

Identificación de reductasas de ácidos hidroxicinámicos y sus derivados en Lactobacillus plantarum WCFS1

AutorSantamaría, Laura
DirectorMuñoz, Rosario ; Rivas, Blanca de las ; López de Felipe, Félix
Fecha de publicación2017
EditorUniversidad Complutense de Madrid
CSIC - Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN)
Resumen[ES]: Los ácidos fenólicos constituyen aproximadamente un tercio de los compuestos fenólicos de la dieta y están asociados con propiedades organolépticas, nutricionales y antioxidantes de los alimentos. El término “ácido fenólico” incluye compuestos que poseen al menos un grupo hidroxilo y un ácido carboxílico como grupo funcional. Los ácidos fenólicos presentes en la naturaleza se pueden dividir en dos grupos en función de su estructura: los ácidos hidroxicinámicos y los ácidos hidroxibenzoicos, siendo más comunes los primeros. Los ácidos hidroxicinámicos incluyen fundamentalmente a los ácidos p-cumarico, cafeico, ferúlico y sinápico. Lactobacillus plantarum es la especie de bacteria láctica que más frecuentemente se aísla de fermentaciones de alimentos de origen vegetal en los que los ácidos hidroxicinámicos son abundantes. En L. plantarum, el metabolismo de estos ácidos puede seguir dos rutas diferentes. Por un lado, los ácidos hidroxicinámicos pueden reducirse directamente a sus correspondientes ácidos fenilpropiónicos sustituidos mediante la acción de una reductasa; la otra ruta implica la acción secuencial de dos enzimas, en primer lugar una descarboxilasa que descarboxila el ácido a su vinil derivado y posteriormente una reductasa que lo reduce a su correspondiente etil derivado. De todas las enzimas implicadas en la transformación de ácidos hidroxicinámicos en L. plantarum, hasta el momento actual, tan solo se ha descrito a nivel genético y molecular la descarboxilasa Lp_3665, mientras que las reductasas implicadas en ambas rutas se desconocen tanto a nivel enzimático como genético. El estudio transcriptómico global de la respuesta de L. plantarum WCFS1 a la presencia de un ácido hidroxicinámico (ácido p-cumárico) reveló que tres genes que codificaban posibles reductasas mostraban una inducción de su expresión (lp_1424, lp_1425 y lp_3125). La interrupción de estos genes en L. plantarum WCFS1, mediante un proceso de inserción duplicación por recombinación homóloga, demostró que los mutantes en los que se habían interrumpido los genes lp_1424 y lp_1425 no fueron capaces de reducir los ácidos hidroxicinámicos mientras que el mutante del gen lp_3125 no redujo los vinil a etil fenoles. Mediante transcripción reversa se demostró que los genes lp_1424 y lp_1425 se
transcriben juntos. El análisis de expresión génica confirma que en la reducción de los ácidos hidroxicinámicos es necesaria la presencia de una proteína Lp_1425 funcional. Extractos de Escherichia coli en los que se hiperexpresó el gen lp_1425 redujeron los ácidos hidroxicinámicos ensayados. Sin embargo, las reacciones in vitro usando la proteína recombinante Lp_1425 hiperproducida y purificada no fueron capaces de reducirlos. Un análisis electroforético de la proteína Lp_1425 reveló que ésta se proteoliza y sólo el dominio carboxilo-terminal de unión a FAD está presente después de purificar y dializar la proteína. Teniendo en cuenta que los genes lp_1424 y lp_1425 se expresan juntos en L. plantarum, ambos genes se expresaron simultáneamente en E. coli. Los resultados obtenidos indicaron que ambas proteínas se purificaban juntas y que la presencia de Lp_1424 evita parcialmente la proteólisis de Lp_1425. En relación a la especificidad de sustrato, se observó que todos los ácidos hidroxicinámicos analizados fueron reducidos por la proteína Lp_1425. Los análisis por HPLC y la detección del gen mediante PCR confirmaron que, de todas las bacterias lácticas ensayadas, solamente aquellas que pertenecían al grupo de L. plantarum así como Enterococcus casseliflavus y Enterococcus gallinarum poseían la capacidad de reducir ácidos hidroxicinámicos. Debido a que la inactivación del gen lp_3125 impide la reducción de los vinil fenoles a sus correspondientes etil fenoles en L. plantarum, este gen se hiperexpresó en E. coli. De forma similar a lo que ocurrió con los extractos de E. coli cuando se hiperexpresó lp_1425, los extractos de E. coli con el gen lp_3125 hiperexpresado fueron capaces de reducir los vinil fenoles ensayados. Por el contrario, en las reacciones in vitro utilizando la proteína recombinante Lp_3125 hiperproducida y purificada no se observó dicha reducción. El análisis por HPLC así como la detección del gen mediante PCR revelaron que la capacidad para reducir los vinil fenoles es poco frecuente entre las bacterias lácticas, estando sólo presente en las bacterias del grupo de L. plantarum .
[EN]: Phenolic acids account for almost one third of the dietary phenols and are associated with organoleptic, nutritional and antioxidant properties of foods. Phenolic acids include phenols that possess one carboxylic acid functional group. The naturally occurring phenolic acids contain two distinguishing constitutive carbon frameworks, the hydroxycinnamic and hydroxybenzoic structures. The hydroxycinnamic acids are more common than are hydroxybenzoic acids and mainly included coumaric, caffeic, ferulic and sinapic acids. Lactobacillus plantarum is a lactic acid bacterial species that is most frequently encountered in the fermentation of plant materials where hydroxycinammic acids are abundant. The metabolism of hydroxycinnamic acids on L. plantarum has been recently described and could follow two simultaneous pathways. Hydroxycinnamic acids could be directly reduced to their corresponding substituted phenyl propionic acids by a still unknown reductase enzyme. Alternatively, the second pathway implies that hydroxycinnamic acids are decarboxylated into their vinyl phenol derivatives, and then, by an unknown reductase, are subsequently reduced to their corresponding ethyl derivatives. The decarboxylation step is catalyzed by the phenolic acid decarboxylase Lp_3665 enzyme. However, the reductase enzymes involved in the metabolism of hydroxyxcinnamic acids have not been genetically or biochemically characterized so far. Whole genome transcriptional analysis of L. plantarum WCFS1 in the presence of a hydroxycinammic acid (p-coumaric acid) revealed that three genes encoding putative reductases were differentially expressed (lp_1424, lp_1425, and lp_3125). Disruption of these genes in L. plantarum WCFS1 by a insertion-duplication mutagenesis, demonstrated that lp_1424 and lp_1425 gene mutants were unable to reduce hydroxycinnamic acids whereas the mutant on the lp_3125 gene was unable to reduce vinyl to ethyl phenols. Reverse transcription analysis revealed that lp_1424 and lp_1425 genes were cotranscribed. Expression analysis confirms that hydroxycinnamic acid reduction implies the presence of a functional Lp_1425 protein. Extracts of Escherichia coli overexpressing the lp_1425 gene
were able to reduce hydroxycinnamic acids. However, reactions in vitro using the hiperproduced and purified recombinant Lp_1425 protein were unable to reduce the hydroxycinnamic acid present. Electrophoretic analysis of Lp_1425 protein revealed that it was proteolized and only the C-terminal FAD-binding domain was present on the purified and dialyzed protein. As lp_1424 and lp_1425 genes were coexpressed in L. plantarum, both genes were simultaneous coexpressed in E. coli. The obtained results indicated that both proteins are purified together and the presence of Lp_1424 partially avoids Lp_1425 proteolisis. In relation to substrate specificity, all the hydroxycinnamic acids analyzed were reduced by Lp_1425 protein. HPLC analysis and PCR detection confirmed that, from the lactic acid bacteria assayed, only those belonging to the L. plantarum group as well as Enterococcus casseliflavus and Enterococcus gallinarum possessed the ability to reduce hydroxycinnamic acids. As the inactivation of the lp_3125 gene avoids the reduction of vinyl to ethyl phenols, this gene was overexpressed in E. coli. Similarly to lp_1425, extracts of E.coli overexpressing the lp_3125 gene were able to reduce vinyl phenols. Surprisingly, reactions in vitro using the hiperproduced and purified recombinant Lp_3125 protein were unable to reduce them. E.coli extracts containing recombinant Lp_3125 reduced all the vinyl phenols assayed. HPLC analysis and PCR detection revealed that the capacity to reduce vinyl phenols is scarce on lactic acid bacteria, as it is only present on bacteria from the L. plantarum group
DescripciónMemoria presentada por: Laura Santamaría Rubio para optar al grado de doctor por el Departamento de Microbiología y Parasitología de la Facultad de Ciencias Biológicas de la Universidad Complutense de Madrid y que ha sido realizada en el Departamento de Procesos del Instituto de Ciencia y Tecnología de Alimentos y Nutrición del CSIC.
URIhttp://hdl.handle.net/10261/172479
Aparece en las colecciones: (ICTAN) Tesis
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
idenlactoWCF.pdf3,12 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.