English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/170627
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Planck intermediate results

Other TitlesLII. Planet flux densities
AuthorsAkrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. Belén ; Bartolo, Nicola; Basak, S.; Benabed, K.; Bernard, J. P.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J. ; Górski, K. M.; Gruppuso, A.; Mennella, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D. ; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Migliaccio, M.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicof, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, Guilaine; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Miville-Deschênes, M. A.; Lawrence, C. R.; Jeune, M. le; Lellouch, E.; Levrier, F.; Liguori, Michele; Lilje, P. B.; Lindholm, V.; López-Caniego, M. ; Ma, Y.-Z; Macías-Pérez, J. F.; Molinari, D.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, Enrique ; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Bersanelli, M.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Bielewicz, P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, Beatriz; Salvati, L.; Bonavera, Laura ; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L. ; Bond, J. R.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Bond, J. R.; Tent, F. van; Vielva, P. ; Villa, F.; Wehus, I. K.; Zacchei, A.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. F.; Carron, J.; Chiang, H. C.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, Andrés ; Cuttaia, F.; Bernardis, P. de; Rosa, A. de; Zotti, G. de; Delabrouille, J.; Valentino, E. di; Dickinson, C.; Diego, José María ; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.
KeywordsPlanets and satellites: general
Cosmology: observations
Cosmic background radiation
Issue Date2017
PublisherEDP Sciences
CitationAstronomy and Astrophysics 607: A122 (2017)
AbstractMeasurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of ßring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
Publisher version (URL)https://doi.org/10.1051/0004-6361/201630311
Identifiersdoi: 10.1051/0004-6361/201630311
e-issn: 1432-0746
issn: 0004-6361
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
planckLII.pdf12,47 MBUnknownView/Open
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.