English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/169257
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


A new functional role uncovered for RASGRF2 in control of nuclear migration in cone photoreceptors during postnatal retinal development

AuthorsJimeno, David ; Santos de Dios, Eugenio
KeywordsCone photoreceptor
Intracellular organelle traffic
Nuclear migration
Issue Date2017
PublisherTaylor & Francis
CitationSmall GTPases 8(1): 26-30 (2017)
AbstractDespite their homologous structure and central nervous system(CNS) expression patterns, the GRF1 and GRF2 guanine nucleotide exchange factors(GEF) appear to play distinct, non-overlapping functions in cellular excitability, synaptic plasticity or neuromodulation. We recently uncovered a new functional role of GRF2 controlling nuclear migration in cone photoreceptors during postnatal neuroepithelial differentiation of the mouse retina. Analyzing GRF2-KO mice, we detected the specific accumulation of abnormally located, “ectopic” cone photoreceptor nuclei in the photoreceptor segment(PS) layer of their retinas. This alteration was accompanied by defective electroretinograms(ERG) indicative of impaired cone-mediated visual function, and accumulation around the “ectopic” nuclei of signaling molecules known to be functionally relevant for intracellular organelle migration, cytoskeletal reorganization or cell polarity establishment including PAR3, PAR6, and the phosphorylated proteins pPAK, pMLC2 and pVASP. We propose a mechanism whereby the absence of a productive functional interaction between GRF2 and its downstream target CDC42 leads to altered formation/structure of PAR-containing, polarity-related macromolecular complexes and abnormal activation of downstream signaling mediated by activated, phosphorylated forms of PAK, VASP and MLC2. As cone photoreceptors are responsible for color vision and visual acuity, these observations are potentially relevant for degenerative diseases of the human retina, harboring almost double number of cones than mice.
Identifiersdoi: 10.1080/21541248.2016.1189989
e-issn: 2154-1256
issn: 2154-1248
Appears in Collections:(IBMCC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.