English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/169202
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice

AuthorsGarcía-Ramírez, Idoia ; Tadros, Saber; González-Herrero, Inés ; Martín-Lorenzo, Alberto ; Rodríguez-Hernández, Guillermo ; Moore, Dalia; Ruiz-Roca, Lucía ; Blanco, Óscar; Alonso-López, D.; De Las Rivas, Javier ; Hartert, Keenan; Duval, Romain; Klinkebiel, David; Bast, Martin; Vose, Julie; Lunning, Matthew; Fu, Kai; Greiner, Timothy; Rodrigues-Lima, Fernando; Jiménez, Rafael; García-Criado, Francisco Javier; García-Cenador, Begoña; Brindle, Paul; Vicente-Dueñas, Carolina ; Alizadeh, Ash A.; Sánchez García, Isidro ; Green, Michael R.
Issue Date2017
PublisherAmerican Society of Hematology
CitationBlood 129(19): 2645-2656 (2017)
AbstractCREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits in B-cell development and can cooperate with Bcl2 overexpression to promote B-cell lymphoma. Through transcriptional and epigenetic profiling of these B cells, we found that Crebbp inactivation was associated with broad transcriptional alterations, but no changes in the patterns of histone acetylation at the proximal regulatory regions of these genes. However, B cells with Crebbp inactivation showed high expression of Myc and patterns of altered histone acetylation that were localized to intragenic regions, enriched for Myc DNA binding motifs, andshowedMycbinding. Through the analysis ofCREBBPmutations from a large cohort of primary human FL and DLBCL, we show a significant difference in the spectrum of CREBBP mutations in these 2 diseases, with higher frequencies of nonsense/ frameshift mutations in DLBCL compared with FL. Together, our data therefore provide important links between Crebbp inactivation and Bcl2 dependence and show a role for Crebbp inactivation in the induction of Myc expression. We suggest this may parallel the role of CREBBP frameshift/nonsense mutations in DLBCL that result in loss of the protein, but may contrast the role of missense mutations in the lysine acetyltransferase domain that are more frequently observed in FL and yield an inactive protein.
URIhttp://hdl.handle.net/10261/169202
Identifiersdoi: 10.1182/blood-2016-08-733469
e-issn: 1528-0020
issn: 0006-4971
Appears in Collections:(IBMCC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.