Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/16892
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

On the remarkable mechanostability of scaffoldins and the mechanical clamp motif

AutorValbuena, Alejandro CSIC ORCID; Oroz, Javier CSIC ORCID; Hervás, Rubén CSIC ORCID; Vera, Andrés M. CSIC; Rodríguez, David; Menéndez, Margarita CSIC ORCID; Sulkowska, Joanna I.; Cieplak, Marek; Carrión-Vázquez, Mariano Sixto CSIC ORCID
Palabras claveCellulosome
Cohesins
Mechanical stability
Protein nanomechanics
Single-molecule force spectroscopy
Fecha de publicación31-jul-2009
EditorNational Academy of Sciences (U.S.)
CitaciónProc. Natl. Acad. Sci. USA (PNAS) 106(33): 13791-13796 (2009)
ResumenProtein mechanostability is a fundamental biological property that can only be measured by single-molecule manipulation techniques. Such studies have unveiled a variety of highly mechanostable modules (mainly of the Ig-like, β-sandwich type) in modular proteins subjected to mechanical stress from the cytoskeleton and the metazoan cell–cell interface. Their mechanostability is often attributed to a “mechanical clamp” of secondary structure (a patch of backbone hydrogen bonds) fastening their ends. Here we investigate the nanomechanics of scaffoldins, an important family of scaffolding proteins that assembles a variety of cellulases into the so-called cellulosome, a microbial extracellular nanomachine for cellulose adhesion and degradation. These proteins anchor the microbial cell to cellulose substrates, which makes their connecting region likely to be subjected to mechanical stress. By using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and computer simulations, here we show that the cohesin I modules from the connecting region of cellulosome scaffoldins are the most robust mechanical proteins studied experimentally or predicted from the entire Protein Data Bank. The mechanostability of the cohesin modules studied correlates well with their mechanical kinetic stability but not with their thermal stability, and it is well predicted by computer simulations, even coarse-grained. This extraordinary mechanical stability is attributed to 2 mechanical clamps in tandem. Our findings provide the current upper limit of protein mechanostability and establish shear mechanical clamps as a general structural/functional motif widespread in proteins putatively subjected to mechanical stress. These data have important implications for the scaffoldin physiology and for protein design in biotechnology and nanotechnology.
Descripción6 pages, 4 figures.-- PMID: 19666489 [PubMed].-- PMCID: PMC2719556.-- Printed version published Aug 18, 2009.-- Supporting information available at: http://www.pnas.org/content/106/33/13791/suppl/DCSupplemental
Full-text paper available Open Access at the journal site.
Versión del editorhttp://dx.doi.org/10.1073/pnas.0813093106
URIhttp://hdl.handle.net/10261/16892
DOI10.1073/pnas.0813093106
ISSN0027-8424
Aparece en las colecciones: (IQF) Artículos
(IC) Artículos

Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

44
checked on 28-mar-2024

SCOPUSTM   
Citations

99
checked on 23-mar-2024

WEB OF SCIENCETM
Citations

100
checked on 23-feb-2024

Page view(s)

445
checked on 29-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.