Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166938
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content

AutorRodrigues, Francelino A.; Blasch, Gerald; Defourny, Pierre; Ortiz-Monasterio, J. Ivan; Schulthess, Urs; Zarco-Tejada, Pablo J. CSIC ORCID; Taylor, James A.; Gérard, Bruno
Fecha de publicación12-jun-2018
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 10 (6): 930 (2018)
ResumenThis study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400–850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices—normalized difference spectral index (NDSI) and ratio spectral index (RSI)—from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R<sup>2</sup> (0.32) were found using both the spectral (NDSI—<i>Ri</i>, 750 to 840 nm and <i>Rj</i>, ±720–736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R<sup>2</sup> ≤ 0.21), (b) a relatively low overall prediction error (RMSE: 0.45–0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: −0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices.
Versión del editorhttps://doi.org/10.3390/rs10060930
URIhttp://hdl.handle.net/10261/166938
DOI10.3390/rs10060930
Identificadoresdoi: 10.3390/rs10060930
Aparece en las colecciones: (IAS) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
remotesensing-10-00930.pdf5,2 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

10
checked on 10-abr-2024

SCOPUSTM   
Citations

44
checked on 19-abr-2024

WEB OF SCIENCETM
Citations

41
checked on 22-feb-2024

Page view(s)

317
checked on 24-abr-2024

Download(s)

275
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons