Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166593
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Formation mechanism of maghemite nanoflowers synthesized by a polyol-mediated process

AutorGavilán, Helena CSIC ORCID; Sánchez, Helena H.; Brollo, María E. F.; Asín, Laura CSIC ORCID; Moerner, Kimmie K.; Frandsen, Cathrine; Lázaro, Francisco J.; Serna Pereda, Carlos J. CSIC; Veintemillas-Verdaguer, S. CSIC ORCID ; Morales, M. P. CSIC ORCID ; Gutiérrez, Lucía CSIC ORCID
Fecha de publicación2017
EditorAmerican Chemical Society
CitaciónACS Omega 2(10): 7172-7184 (2017)
ResumenMagnetic nanoparticles are being developed as structural and functional materials for use in diverse areas, including biomedical applications. Here, we report the synthesis of maghemite (γ-FeO) nanoparticles with distinct morphologies: single-core and multicore, including hollow spheres and nanoflowers, prepared by the polyol process. We have used sodium acetate to control the nucleation and assembly process to obtain the different particle morphologies. Moreover, from samples obtained at different time steps during the synthesis, we have elucidated the formation mechanism of the nanoflowers: the initial phases of the reaction present a lepidocrocite (γ-FeOOH) structure, which suffers a fast dehydroxylation, transforming to an intermediate >undescribed> phase, possibly a partly dehydroxylated lepidocrocite, which after some incubation time evolves to maghemite nanoflowers. Once the nanoflowers have been formed, a crystallization process takes place, where the γ-FeO crystallites within the nanoflowers grow in size (from ∼11 to 23 nm), but the particle size of the flower remains essentially unchanged (∼60 nm). Samples with different morphologies were coated with citric acid and their heating capacity in an alternating magnetic field was evaluated. We observe that nanoflowers with large cores (23 nm, controlled by annealing) densely packed (tuned by low NaAc concentration) offer 5 times enhanced heating capacity compared to that of the nanoflowers with smaller core sizes (15 nm), 4 times enhanced heating effect compared to that of the hollow spheres, and 1.5 times enhanced heating effect compared to that of single-core nanoparticles (36 nm) used in this work.
Versión del editorhttps://doi.org/10.1021/acsomega.7b00975
URIhttp://hdl.handle.net/10261/166593
DOI10.1021/acsomega.7b00975
Identificadoresdoi: 10.1021/acsomega.7b00975
e-issn: 2470-1343
Aparece en las colecciones: (ICMA) Artículos
(ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
formaproces.pdf9,33 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

31
checked on 11-mar-2024

SCOPUSTM   
Citations

79
checked on 15-mar-2024

WEB OF SCIENCETM
Citations

73
checked on 27-feb-2024

Page view(s)

527
checked on 18-mar-2024

Download(s)

459
checked on 18-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.