English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/165189
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Computation of rainfall erosivity from daily precipitation amounts

AutorBeguería, Santiago ; Serrano-Notivoli, Roberto; Tomás-Burguera, Miquel
Palabras claveSoil erosion
Rainfall erosivityRUSLEUSLERfactor
Rainfall erosivity
RUSLE
USLE
R factor
E130
Fecha de publicaciónoct-2018
EditorElsevier
CitaciónBeguería S, Serrano-Notivoli R, Tomás-Burguera M. Computation of rainfall erosivity from daily precipitation amounts. Science of the Total Environment 637-638: 359-373 (2018)
ResumenRainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases.
Descripción42 Pags.- 2 Tabls.- 16 Figs. The definitive version is available at: https://www.sciencedirect.com/science/journal/00489697
Versión del editorhttps://doi.org/10.1016/j.scitotenv.2018.04.400
URIhttp://hdl.handle.net/10261/165189
DOI10.1016/j.scitotenv.2018.04.400
ISSN0048-9697
http://dx.doi.org/10.13039/501100003176
http://dx.doi.org/10.13039/501100000780
E-ISSN1879-1026
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BegueriaS_SciTotEnvironm_2018.pdf Embargado hasta 1 de noviembre de 20206,99 MBAdobe PDFVista previa
Visualizar/Abrir     Petición de una copia
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.