English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/163973
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Performance Analysis of Real-Time DNN Inference on Raspberry Pi

AutorVelasco-Montero, Delia; Fernández-Berni, J. ; Carmona-Galán, R. ; Rodríguez-Vázquez, Ángel
Palabras claveDeep Learning
Convolutional Neural Networks
Embedded Vision
Raspberry Pi
Inference
Perfomance
Fecha de publicación2018
EditorInternational Society for Optics and Photonics
Citaciónin Real-Time Image and Video Processing Conference, SPIE Defense + Commercial Sensing Symposium, Orlando FL USA, April 2018.
ResumenDeep Neural Networks (DNNs) have emerged as the reference processing architecture for the implementation of multiple computer vision tasks. They achieve much higher accuracy than traditional algorithms based on shallow learning. However, it comes at the cost of a substantial increase of computational resources. This constitutes a challenge for embedded vision systems performing edge inference as opposed to cloud processing. In such a demanding scenario, several open-source frameworks have been developed, e.g. Ca e, OpenCV, TensorFlow, Theano, Torch or MXNet. All of these tools enable the deployment of various state-of-the-art DNN models for inference, though each one relies on particular optimization libraries and techniques resulting in di erent performance behavior. In this paper, we present a comparative study of some of these frameworks in terms of power consumption, throughput and precision for some of the most popular Convolutional Neural Networks (CNN) models. The benchmarking system is Raspberry Pi 3 Model B, a low-cost embedded platform with limited resources. We highlight the advantages and limitations associated with the practical use of the analyzed frameworks. Some guidelines are provided for suitable selection of a speci c tool according to prescribed application requirements.
Versión del editorhttps://spie.org/SIC/conferencedetails/real-time-image-video-processing?SSO=1
URIhttp://hdl.handle.net/10261/163973
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Performance_Analysis_of_Real_Time_DNN_on_RPi.pdf275,23 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.