English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/162075
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation

AutorCamuñas-Mesa, Luis A.; Domínguez-Cordero, Yaisel L.; Linares-Barranco, Alejandro; Serrano-Gotarredona, Teresa ; Linares-Barranco, Bernabé
Palabras claveConvolutional neural networks
Neuromorphic vision
Address Event Representation (AER)
Event-driven processing
Neural network hardware
Reconfigurable Networks
Fecha de publicación2018
EditorFrontiers Media
CitaciónFrontiers in Neuroscience, 12: 63 (2018)
ResumenConvolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network
Versión del editorhtpp://dx.doi.org/10.3389/fnins.2018.00063
URIhttp://hdl.handle.net/10261/162075
DOI10.3389/fnins.2018.00063
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
fnins-12-00063.pdf4,7 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.