English
español
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10261/161882
Share/Impact:
Statistics |
![]() ![]() ![]() |
|
|
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE | |||
|
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chiner-Oms, Álvaro | es_ES |
dc.contributor.author | González-Candelas, Fernando | es_ES |
dc.contributor.author | Comas, Iñaki | es_ES |
dc.date.accessioned | 2018-03-09T07:44:00Z | - |
dc.date.available | 2018-03-09T07:44:00Z | - |
dc.date.issued | 2018-02-28 | - |
dc.identifier.citation | Scientific Reports 8(1):3813 (2018) | es_ES |
dc.identifier.uri | http://hdl.handle.net/10261/161882 | - |
dc.description | 13 Páginas, 7 figuras . Contiene información suplementaria en : 10.1038/s41598-018-22237-5 | es_ES |
dc.description.abstract | Every year, species of the Mycobacterium tuberculosis complex (MTBC) kill more people than any other infectious disease caused by a single agent. As a consequence of its global distribution and parallel evolution with the human host the bacteria is not genetically homogeneous. The observed genetic heterogeneity has relevance at different phenotypic levels, from gene expression to epidemiological dynamics. However, current systems biology datasets have focused on the laboratory reference strain H37Rv. By using large expression datasets testing the role of almost two hundred transcription factors, we have constructed computational models to grab the expression dynamics of Mycobacterium tuberculosis H37Rv genes. However, we have found that many of those transcription factors are deleted or likely dysfunctional across strains of the MTBC. As a result, we failed to predict expression changes in strains with a different genetic background when compared with experimental data. These results highlight the importance of designing systems biology approaches that take into account the genetic diversity of tubercle bacilli, or any other pathogen, if we want to identify universal targets for vaccines, diagnostics and treatments. | es_ES |
dc.description.sponsorship | This work was funded by projects BFU2014-58656-R and BFU2017-89594-R from Ministerio de Economía y Competitividad (Spanish Government) and PROMETEO/2016/122 from Generalitat Valenciana (to FGC), Ministerio de Economía y Competitividad (Spanish Government) research grant SAF2016-77346-R, and the European Research Council (ERC) (638553-TB-ACCELERATE) (to IC). ACO is recipient of a FPU fellowship from Ministerio de Educación y Ciencia FPU13/00913 (Spanish Government). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation | MINECO/ICTI2013-2016/BFU2014/58656-R | es_ES |
dc.relation | MINECO/ICTI2013-2016/BFU2017/89594-R | es_ES |
dc.relation | MINECO/ICTI2013-2016/SAF2016/77346-R | es_ES |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/638553 | es_ES |
dc.relation.isversionof | Publisher's version | es_ES |
dc.rights | openAccess | es_ES |
dc.title | Gene expression models based on a reference laboratory strain are poor predictors of Mycobacterium tuberculosis complex transcriptional diversity | es_ES |
dc.type | artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-018-22237-5 | - |
dc.description.peerreviewed | Peer reviewed | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/s41598-018-22237-5 | es_ES |
dc.identifier.e-issn | 2045-2322 | - |
dc.contributor.funder | Ministerio de Economía y Competitividad (España) | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia (España) | es_ES |
dc.relation.csic | Sí | es_ES |
oprm.item.hasRevision | no ko 0 false | * |
dc.identifier.funder | http://dx.doi.org/10.13039/501100003329 | es_ES |
dc.identifier.funder | http://dx.doi.org/10.13039/501100003359 | es_ES |
dc.identifier.funder | http://dx.doi.org/10.13039/501100000781 | es_ES |
Appears in Collections: | (IBV) Artículos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2018_Scientific Reports_Article_22237.pdf | 3,16 MB | Adobe PDF | ![]() View/Open |
Show simple item record
Related articles:
WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.