English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/16186
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem

AuthorsAlmagro, María ; López, J.; Querejeta Mercader, José Ignacio ; Martínez-Mena García, M. Dolores
KeywordsSoil respiration
Seasonal variation
Precipitation pulse-driven ecosystems
Drought Mediterranean
Q10
Rewetting index
Above-ground biomass
C cycling
Issue DateMar-2009
PublisherElsevier
CitationSoil Biology and Biochemistry 41(3): 594-605 (2009)
AbstractExtensive research has focused on the temperature sensitivity of soil respiration. However, in Mediterranean ecosystems, soil respiration may have a pulsed response to precipitation events, especially during prolonged dry periods. Here, we investigate temporal variations in soil respiration (Rs), soil temperature (T) and soil water content (SWC) under three different land uses (a forest area, an abandoned agricultural field and a rainfed olive grove) in a dry Mediterranean area of southeast Spain, and evaluate the relative importance of soil temperature and water content as predictors of Rs. We hypothesize that soil moisture content, rather than soil temperature, becomes the major factor controlling CO2 efflux rates in this Mediterranean ecosystem during the summer dry season. Soil CO2 efflux was measured monthly between January 2006 and December 2007 using a portable soil respiration instrument fitted with a soil respiration chamber (LI-6400-09). Mean annual soil respiration rates were 2.06 ± 0.07, 1.71 ± 0.09, and 1.12 ± 0.12 μmol m−2 s−1 in the forest, abandoned field and olive grove, respectively. Rs was largely controlled by soil temperature above a soil water content threshold value of 10% at 0–15 cm depth for forest and olive grove, and 15% for abandoned field. However, below those thresholds Rs was controlled by soil moisture. Exponential and linear models adequately described Rs responses to environmental variables during the growing and dry seasons. Models combining abiotic (soil temperature and soil rewetting index) and biotic factors (above-ground biomass index and/or distance from the nearest tree) explained between 39 and 73% of the temporal variability of Rs in the forest and olive grove. However, in the abandoned field, a single variable – either soil temperature (growing season) or rewetting index (dry season) – was sufficient to explain between 51 and 63% of the soil CO2 efflux. The fact that the rewetting index, rather than soil water content, became the major factor controlling soil CO2 efflux rates during the prolonged summer drought emphasizes the need to quantify the effects of rain pulses in estimates of net annual carbon fluxes from soil in Mediterranean ecosystems.
Publisher version (URL)http://dx.doi.org/10.1016/j.soilbio.2008.12.021
URIhttp://hdl.handle.net/10261/16186
DOI10.1016/j.soilbio.2008.12.021
ISSN0038-0717
Appears in Collections:(CEBAS) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.