English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/161622
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


The coherence of Lukasiewicz assessments is NP-complete

AuthorsBova, Simone; Flaminio, Tommaso
KeywordsDe Finetti's coherence criterion
Probabilistic kripke models
Infinite-valued Łukasiewicz logic
Issue Date2010
CitationInternational Journal of Approximate Reasoning 51: 294- 304 (2010)
AbstractThe problem of deciding whether a rational assessment of formulas of infinite-valued Łukasiewicz logic is coherent has been shown to be decidable by Mundici [1] and in PSPACE by Flaminio and Montagna [10]. We settle its computational complexity proving an NP-completeness result. We then obtain NP-completeness results for the satisfiability problem of certain many-valued probabilistic logics introduced by Flaminio and Montagna in [9]. © 2009 Elsevier Inc. All rights reserved.
Identifiersdoi: 10.1016/j.ijar.2009.10.002
issn: 0888-613X
Appears in Collections:(IIIA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.