Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/159807
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Nanoscale thermal imaging of dissipation in quantum systems

AutorHalbertal, D.; Cuppens, Jo CSIC; Levitov, Leonid S.; Zeldov, E.
Fecha de publicación2016
EditorNature Publishing Group
CitaciónNature 539: 407-410 (2016)
ResumenEnergy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices-below 1 μKH . This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.
DescripciónarXiv:1609.01487.-- et al.
Versión del editorhttps://doi.org/10.1038/nature19843
URIhttp://hdl.handle.net/10261/159807
DOI10.1038/nature19843
Identificadoresdoi: 10.1038/nature19843
e-issn: 1476-4687
issn: 0028-0836
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Nanoscalethermalimagin.pdf2,74 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

146
checked on 15-abr-2024

WEB OF SCIENCETM
Citations

134
checked on 20-feb-2024

Page view(s)

629
checked on 18-abr-2024

Download(s)

204
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.