English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/157812
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems

AuthorsDubois, Melodie; Rossi, Vincent ; Ser-Giacomi, Enrico ; Arnaud-Haond, Sophie; López, Cristóbal ; Hernández-García, Emilio
Issue DateMay-2016
PublisherWiley-Blackwell
CitationGlobal Ecology and Biogeography 25(5): 503-515 (2016)
Abstract[Aim] Assessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large-scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pertinent conservation planning. Based on a biophysical model for the entire Mediterranean Sea, this study takes an ecosystem approach to connectivity and provides a systematic characterization of broad-scale larval dispersal patterns. It builds on our knowledge of population dynamics and discusses the ecological and management implications.
[Location] The semi-enclosed Mediterranean Sea and its marine ecosystems are used as a case study to investigate broad-scale connectivity patterns and to relate them to oceanography and population dynamics.
[Methods] A flow network is constructed by evenly subdividing the basin into sub-regions which are interconnected through the transport of larvae by ocean currents. It allows for the computation of various connectivity metrics required to evaluate larval retention and exchange.
[Results] Our basin-scale model predicts that retention processes are weak in the open ocean while they are significant in the coastal ocean and are favoured along certain coastlines due to specific oceanographic features. Moreover, we show that wind-driven divergent (convergent, respectively) oceanic regions are systematically characterized by larval sources (sinks, respectively). Finally, although these connectivity metrics have often been studied separately in the literature, we demonstrate they are interrelated under particular conditions. Their integrated analysis facilitates the appraisal of population dynamics, informing both genetic and demographic connectivities.
[Main conclusions] This modelling framework helps ecologists and geneticists to formulate improved hypotheses of population structures and gene flow patterns and to design their sampling strategy accordingly. It is also useful in the implementation and assessment of future protection strategies, such as coastal and offshore marine reserves, by accounting for large-scale dispersal patterns, a missing component of current ecosystem management.
Publisher version (URL)http://doi.org/10.1111/geb.12431
URIhttp://hdl.handle.net/10261/157812
DOI10.1111/geb.12431
ISSN1466-822X
E-ISSN1466-8238
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
marine_ecosystems_Dubois.pdf12,4 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.