English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/15777
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Numerical estimation of critical parameters using the bond entropy

AuthorsMolina, Rafael A. ; Schmitteckert, Peter
Keywords[PACS] Quantum phase transitions
[PACS] Entanglement measures, witnesses, and other characterizations
[PACS] Quantized spin models
Issue Date6-Jun-2007
PublisherAmerican Physical Society
CitationPhysical Review B 75(23): 235104 (2007)
AbstractUsing a model of spinless fermions in a lattice with nearest-neighbor and next-nearest-neighbor interactions, we show that the entropy of the reduced two-site density matrix (the bond entropy) can be used as an extremely accurate and easy to calculate numerical indicator for the critical parameters of the quantum phase transition when the basic ordering pattern has a two-site periodicity. The actual behavior of the bond entropy depends on the particular characteristics of the transition under study. For the Kosterlitz-Thouless-type phase transition from a Luttinger liquid phase to a charge-density wave state, the bond entropy has a local maximum, while in the transition from the Luttinger liquid to the phase separated state, the derivative of the bond entropy has a divergence due to the cancellation of the third eigenvalue of the two-site reduced density matrix.
Description6 pages, 6 figures.--PACS nrs.: 73.43.Nq; 03.67.Mn; 75.10.Jm.--ArXiv pre-print available at: http://arxiv.org/abs/0704.1597v1
Publisher version (URL)http://link.aps.org/doi/10.1103/PhysRevB.75.235104
URIhttp://hdl.handle.net/10261/15777
DOI10.1103/PhysRevB.75.235104
ISSN1098-0121
E-ISSN1550-235X
Appears in Collections:(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
numerical.pdf322,4 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.