English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/157570
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor

AutorDelgado-Restituto, Manuel ; Rodríguez-Pérez, Alberto ; Darie, Ángela; Soto-Sánchez, Cristina; Fernández-Jover, Eduardo; Rodríguez-Vázquez, Ángel
Palabras claveSpike detection
Neural recording
Feature extraction
Neural prosthesi
Brain-Machine Interfaces (BMI)
Fecha de publicación2017
CitaciónIEEE Transactions on Biomedical Circuits and Systems 11: 420- 433 (2017)
ResumenThis paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.
URIhttp://hdl.handle.net/10261/157570
DOI10.1109/TBCAS.2016.2618319
Identificadoresdoi: 10.1109/TBCAS.2016.2618319
issn: 1932-4545
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BioCAS16_-_def2.pdf1,46 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.