English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/157114
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Selective thermal emission of directionally solidified Al2O3/Y3-xErxAl5O12 eutectics: Influence of the microstructure, temperature and erbium content

AuthorsOliete, Patricia B.; Orera, Alodia; Sanjuán, M. L.; Merino, R. I.
KeywordsAl2O3/ Er3Al5O12
Directionally solidified eutectic ceramics
Selective emitters
Optical absorption
Issue Date1-Jan-2018
CitationSolar Energy Materials and Solar Cells 174: 460-468 (2018)
AbstractDirectionally solidified eutectic rods of Al2O3-Y3−xErxAl5O12 (0 ≤ x ≤ 3) composition have been grown using the laser floating zone method at processing rates of 25 mm/h and 750 mm/h. For all the samples the microstructure presents the same morphology, consisting of an interpenetrated 3D eutectic network of both Al2O3 and garnet phases, while eutectic interspacing strongly depends on the solidification rate. Optical absorption, luminescence and thermal emission have been investigated as a function of the growth rate and the erbium content. From the luminescence characterization it can be concluded that erbium ions are present in the eutectic only in the garnet phase. Near infrared thermal emission has been measured at temperatures ranging from 1000 to 1500 °C. Selective emission consisting of an emission band at 1540 nm and a weaker line at 970 nm, ascribed to the radiative de-excitation of the thermally excited Er3+ ions from the 4I13/2 and 4I11/2 multiplets to the 4I15/2 ground state respectively, has been detected in all the samples containing erbium. The influence of the erbium content, the microstructure and the temperature on the thermal emission has been investigated. The strongest selective emission has been obtained for samples with x=3 although it does not increase proportionally to the erbium content. The thermal emission becomes more intense when the temperature is increased but the selective emission seems to saturate at temperatures higher than 1300 °C. This effect is especially noticeable for x=3 and is attributed to thermally activated non-radiative de-excitation channels. It is suggested that these channels become effective through energy transfer among Er3+ ions and towards killers.
Publisher version (URL)https://doi.org/10.1016/j.solmat.2017.09.031
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
SelectiveThermalEmissionAEdiluted_PBOliete_Preprint.pdfVersión Preprint del artículo933,84 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.