Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156921
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Bioenergetics and redox adaptations of astrocytes to neuronal activity

AutorBolaños, Juan P. CSIC ORCID
Palabras claveAMPK
Cdh1
Glycolysis
GSH
Nrf2
PFKFB3
Fecha de publicación2016
EditorJohn Wiley & Sons
International Society for Neurochemistry
CitaciónJournal of Neurochemistry 139(S2): 115-125 (2016)
ResumenNeuronal activity is a high-energy demanding process recruiting all neural cells that adapt their metabolism to sustain the energy and redox balance of neurons. During neurotransmission, synaptic cleft glutamate activates its receptors in neurons and in astrocytes, before being taken up by astrocytes through energy costly transporters. In astrocytes, the energy requirement for glutamate influx is likely to be met by glycolysis. To enable this, astrocytes are constitutively glycolytic, robustly expressing 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), an enzyme that is negligibly present in neurons by continuous degradation because of the ubiquitin-proteasome pathway via anaphase-promoting complex/cyclosome (APC)-Cdh1. Additional factors contributing to the glycolytic frame of astrocytes may include 5′-AMP-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), pyruvate kinase muscle isoform-2 (PKM2), pyruvate dehydrogenase kinase-4 (PDK4), lactate dehydrogenase-B, or monocarboxylate transporter-4 (MCT4). Neurotransmission-associated messengers, such as nitric oxide or ammonium, stimulate lactate release from astrocytes. Astrocyte-derived glycolytic lactate thus sustains the energy needs of neurons, which in contrast to astrocytes mainly rely on oxidative phosphorylation. Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose-phosphate pathway to preserve the redox status. Furthermore, neural activity is coupled with erythroid-derived erythroid-derived 2-like 2 (Nrf2) mediated transcriptional activation of antioxidant genes in astrocytes, which boost the de novo glutathione biosynthesis in neighbor neurons. Thus, the bioenergetics and redox programs of astrocytes are adapted to sustain neuronal activity and survival. Developing therapeutic strategies to interfere with these pathways may be useful to combat neurological diseases.
Versión del editorhttps://doi.org/10.1111/jnc.13486
URIhttp://hdl.handle.net/10261/156921
DOI10.1111/jnc.13486
Identificadoresdoi: 10.1111/jnc.13486
e-issn: 1471-4159
issn: 0022-3042
Aparece en las colecciones: (IBFG) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
redoxastrocytes.pdf394,12 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

77
checked on 24-abr-2024

SCOPUSTM   
Citations

181
checked on 19-abr-2024

WEB OF SCIENCETM
Citations

175
checked on 26-feb-2024

Page view(s)

246
checked on 22-abr-2024

Download(s)

334
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons