Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156128
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia

AutorCoral, Diego Fernando; Mendoza Zélis, Pedro; Marciello, Marzia CSIC ORCID; Morales, M. P. CSIC ORCID ; Craievich, Aldo; Sánchez, Francisco H.; Fernández van Raap, Marcela B.
Fecha de publicación11-ene-2016
EditorAmerican Chemical Society
CitaciónLangmuir 32(5): 1201–1213 (2016)
ResumenBiomedical magnetic colloids commonly used in magnetic hyperthermia experiments often display a bidisperse structure, i.e., are composed of stable nanoclusters coexisting with well-dispersed nanoparticles. However, the influence of nanoclusters in the optimization of colloids for heat dissipation is usually excluded. In this work, bidisperse colloids are used to analyze the effect of nanoclustering and long-range magnetic dipolar interaction on the magnetic hyperthermia efficiency. Two kinds of colloids, composed of magnetite cores with mean sizes of around 10 and 18 nm, coated with oleic acid and dispersed in hexane, and coated with meso-2,3-dimercaptosuccinic acid and dispersed in water, were analyzed. Small-angle X-ray scattering was applied to thoroughly characterize nanoparticle structuring. We proved that the magnetic hyperthermia performances of nanoclusters and single nanoparticles are distinctive. Nanoclustering acts to reduce the specific heating efficiency whereas a peak against concentration appears for the well-dispersed component. Our experiments show that the heating efficiency of a magnetic colloid can increase or decrease when dipolar interactions increase and that the colloid concentration, i.e., dipolar interaction, can be used to improve magnetic hyperthermia. We have proven that the power dissipated by an ensemble of dispersed magnetic nanoparticles becomes a nonextensive property as a direct consequence of the long-range nature of dipolar interactions. This knowledge is a key point in selecting the correct dose that has to be injected to achieve the desired outcome in intracellular magnetic hyperthermia therapy.
Versión del editorhttp://doi.org/10.1021/acs.langmuir.5b03559
URIhttp://hdl.handle.net/10261/156128
DOI10.1021/acs.langmuir.5b03559
ISSN0743-7463
E-ISSN1520-5827
Aparece en las colecciones: (ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

123
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

118
checked on 26-feb-2024

Page view(s)

273
checked on 19-abr-2024

Download(s)

122
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.