English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155704
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Winds induce CO2 exchange with the atmosphere and vadose zone transport in a karstic ecosystem

Autor Sánchez-Cañete, Enrique P.; Oyonarte, Cecilio; Serrano-Ortiz, Penélope ; Curiel Yuste, Jorge ; Pérez-Priego, Óscar ; Domingo, Francisco ; Kowalski, Andrew S.
Palabras clave Wind increases CO2
Wind induces CO2
Windy days increased NECB emissions and reduced soil CO2 concentrations
Depletion in bare soil
Under plant soil and induces CO2
Transport in surface soil and bedrock but not in subsurface
Fecha de publicación ago-2016
EditorAmerican Geophysical Union
Citación Journal of Geophysical Research - Part G - BioGeo 121(8): 2049-2063 (2016)
ResumenResearch on the subterranean CO dynamics has focused individually on either surface soils or bedrock cavities, neglecting the interaction of both systems as a whole. In this regard, the vadose zone contains CO-enriched air (ca. 5% by volume) in the first meters, and its exchange with the atmosphere can represent from 10 to 90% of total ecosystem CO emissions. Despite its importance, to date still lacking are reliable and robust databases of vadose zone CO contents that would improve knowledge of seasonal-annual aboveground-belowground CO balances. Here we study 2.5 years of vadose zone CO dynamics in a semiarid ecosystem. The experimental design includes an integrative approach to continuously measure CO in vertical and horizontal soil profiles, following gradients from surface to deep horizons and from areas of net biological CO production (under plants) to areas of lowest CO production (bare soil), as well as a bedrock borehole representing karst cavities and ecosystem-scale exchanges. We found that CO followed similar seasonal patterns for the different layers, with the maximum seasonal values of CO delayed with depth (deeper more delayed). However, the behavior of CO transport differed markedly among layers. Advective transport driven by wind induced CO emission both in surface soil and bedrock, but with negligible effect on subsurface soil, which appears to act as a buffer impeding rapid CO exchanges. Our study provides the first evidence of enrichment of CO under plant, hypothesizing that CO-rich air could come from root zone or by transport from deepest layers through cracks and fissures.
URI http://hdl.handle.net/10261/155704
Identificadoresdoi: 10.1002/2016JG003500
issn: 2169-8961
Aparece en las colecciones: (EEZA) Artículos
(MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
JGeoph Res Part G 121(8) 2049-2063 (2016).pdf2,34 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.