English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155228
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 0 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine

Autor Sen-Bhattacharya, Basabdatta; Serrano-Gotarredona, Teresa ; Balassa, Lorinc; Bhattacharya, Akash; Stokes, Alan B.; Rowley, Andrew; Sugiarto, Indar; Furber, Steve
Palabras clave Lateral geniculate nucleus,
SpiNNaker machine
sPyNNaker
Steady state visually evoked potentials
LGN interneurons
Entrainment
Electronic retina
Multi-node models
Fecha de publicación 2017
EditorFrontiers Media
Citación Frontiers in Neuroscience, 11 : 454 (2017)
ResumenWe present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN) developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP)—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG). Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt > 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz) implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi-node architecture consisting of three “nodes,” where each node is the “basic building block” LGN model. This 420 neuron model is tested with synthetic periodic stimulus at 10 Hz to all the nodes. The model output is the average of the outputs from all nodes, and conforms to the above-mentioned predictions of each node. Power consumption for model simulation on SpiNNaker is ≪1 W. Ke
Versión del editorhtpp://dx.doi.org/10.3389/fnins.2017.00454
URI http://hdl.handle.net/10261/155228
DOI10.3389/fnins.2017.00454
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
fnins-11-00454.pdf4,68 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.