English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/155076
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Synaptically Released Acetylcholine Evokes Ca2+ Elevations in Astrocytes in Hippocampal Slices

AuthorsAraque, Alfonso ; Martín, E. D.; Perea, Gertrudis ; Arellano, Jon I.; Buño, Washington
KeywordsIntracellular calcium Astrocytes Muscarinic cholinergic receptors Glutamate transporters Hippocampal slices Synaptic transmitter release
Issue Date2002
PublisherSociety for Neuroscience
CitationJournal of Neuroscience 22: 2443- 2450 (2002)
AbstractRecent results have demonstrated the existence of bidirectional communication between glial cells and neurons. We investigated in brain slices whether rat hippocampal astrocytes respond to acetylcholine synaptically released by an extrinsic pathway. We stimulated the stratum oriens/alveus, which contains cholinergic afferents from the septum and diagonal band of Broca, and recorded whole-cell membrane currents and intracellular Ca2+ levels of astrocytes located in the hippocampal stratum oriens. Nerve-fiber stimulation evoked a long-lasting inward current and increased the Ca 2+ levels in astrocytes. Both astrocytic responses were abolished by tetrodotoxin or Cd2+ and were increased by 4-aminopyridine, indicating that the responses were attributable to synaptically released neurotransmitter. The inward current was inhibited by glutamate transporter antagonists, indicating that it was attributable to the electrogenic glutamate transporter activity. The synaptically evoked intracellular Ca2+ elevations were not affected by glutamate receptor antagonists but were abolished by atropine, indicating that they were mediated by muscarinic cholinergic receptors. Thapsigargin prevented the Ca2+ elevation but did not modify the inward current, indicating that the Ca2+ signal was attributable to intracellular Ca2+ mobilization. These results indicate that hippocampal astrocytes respond to acetylcholine released by synaptic terminals. The synaptically released acetylcholine acts on muscarinic receptors, mobilizing Ca2+ from the intracellular stores. Different regions in the recorded astrocytes showed independent stimulus-induced Ca 2+ variations, suggesting the existence of subcellular domains in the astrocytic responses evoked by the synaptic cholinergic activity. Therefore, our results show the existence of cholinergic neuron-astrocyte signaling and suggest that astrocytes are a target of axonal inputs from different brain areas.
URIhttp://hdl.handle.net/10261/155076
DOI10.1523/JNEUROSCI.22-07-02443.2002
ISSN0270-6474
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.