English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/154759
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard

Autor Rey-Caramés, Clara; Diago, María P.; Martín, M. Pilar ; Lobo, Agustín ; Tardaguila, Javier
Palabras clave precision viticulture
remote sensing
remotely piloted aerial system
spectral indices
kappa index
Fecha de publicación 2015
EditorMultidisciplinary Digital Publishing Institute
Citación Remote Sensing 7(11): 14458-14481 (2015)
ResumenImplementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS), and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.). Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531)/(R802 + R531) and NVI2 = (R802 − R570)/(R802 + R570), were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70) and mean cluster weight (0.40). These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.
Versión del editorhttp://dx.doi.org/10.3390/rs71114458
URI http://hdl.handle.net/10261/154759
ISSN2072-4292
Aparece en las colecciones: (CCHS-IEGD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Using_RPAS_Multi-Spectral_Imagery.pdf1,38 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.