English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/153730
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)

Radio-Frequency Inductor Synthesis Using Evolutionary Computation and Gaussian-Process Surrogate Modeling

Autor Passos, F.; Roca, Elisenda ; Castro-López, R. ; Fernández, Francisco V.
Palabras clave Surrogate models
Evolutionary algorithms,
Single-objective optimization
Multi-objective optimization
Integrated inductors
Fecha de publicación 2017
Citación Applied Soft Computing, 60: 495-507 (2017)
ResumenIn recent years, the application of evolutionary computation techniques to electronic circuit design problems, ranging from digital to analog and radiofrequency circuits, has received increasing attention. The level of maturity runs inversely to the complexity of the design task, less complex in digital circuits, higher in analog ones and still higher in radiofrequency circuits. Radiofrequency inductors are key culprits of such complexity. Their key performance parameters are inductance and quality factors, both a function of the frequency. The inductor optimization requires knowledge of such parameters at a few representative frequencies. Most common approaches for optimization-based radiofrequency circuit design use analytical models for the inductors. Although a lot of effort has been devoted to improve the accuracy of such analytical models, errors in inductance and quality factor in the range of 5% to 25% are usual and it may go as high as 200% for some device sizes. When the analytical models are used in optimization-based circuit design approaches, these errors lead to suboptimal results, or, worse, to a disastrous non-fulfilment of specifications. Expert inductor designers rely on iterative evaluations with electromagnetic simulators, which, properly configured, are able to yield a highly accurate performance evaluation. Unfortunately, electromagnetic simulations typically take from some tens of seconds to a few hours, hampering their coupling to evolutionary computation algorithms. Therefore, analytical models and electromagnetic simulation represent extreme cases of the accuracy-efficiency trade-off in performance evaluation of radiofrequency inductors. Surrogate modeling strategies arise as promising candidates to improve such trade-off. However, obtaining the necessary accuracy is not that easy as inductance and quality factor at some representative frequencies must be obtained and both performances change abruptly around the self-resonance frequency, which is particular to each device and may be located above or below the frequencies of interest. Both, offline and online training methods will be considered in this work and a new two-step strategy for inductor modeling is proposed that significantly improves the accuracy of offline methods. The new strategy is demonstrated and compared for both, singleobjective and multi-objective optimization scenarios. Numerous experimental results show that the proposed two-step approach outperforms simpler application strategies of surrogate modelling techniques, getting comparable performances to approaches based on electromagnetic simulation but with orders of magnitude less computational effort
Versión del editorhttps://doi.org/10.1016/j.asoc.2017.07.036
URI http://hdl.handle.net/10261/153730
Aparece en las colecciones: (IMS-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Surrindsynthesis_asc_revisedv4.pdf Embargado hasta 1 de junio de 20196,24 MBAdobe PDFVista previa
Visualizar/Abrir     Petición de una copia
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.