English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/152268
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Evaluating mortality rates with a novel integrated framework for nonmonogamous species

AuthorsTenan, Simone; Iemma, Aaron; Bragalanti, Natalia; Pedrini, Paolo; De Barba, Marta; Randi, Ettore; Groff, Claudio; Genovart, Meritxell
Issue Date20-Aug-2016
PublisherJohn Wiley & Sons
CitationConservation Biology 30: 1307-1319 (2016)
AbstractThe conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause-specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long-term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female-based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two-sex framework that allows investigation of population dynamics and quantification of cause-specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human-related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human-bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause-specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.
Publisher version (URL)https://doi.org/10.1111/cobi.12736
URIhttp://hdl.handle.net/10261/152268
DOI10.1111/cobi.12736
Identifiersdoi: 10.1111/cobi.12736
issn: 1523-1739
Appears in Collections:(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.