English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/149127
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Calibration of the 1D shallow water equations: a comparison of Monte Carlo and gradient-based optimization methods

AutorLacasta, Asier; Morales-Hernández, Mario; Burguete Tolosa, Javier ; Brufau, Pilar; García-Navarro, Pilar
Palabras claveCalibration
Gradient Method
Monte Carlo
Adjoint Method
Water Equations
Fecha de publicaciónmar-2017
CitaciónLacasta A, Morales-Hernández M, Burguete J, Brufau P, García-Navarro P. Calibration of the 1D shallow water equations: a comparison of Monte Carlo and gradient-based optimization methods. Journal of Hydroinformatics 19 (2): 282-298 (2017)
ResumenThe calibration of parameters in complex systems usually requires a large computational effort. Moreover, it becomes harder to perform the calibration when non-linear systems underlie the physical process, and the direction to follow in order to optimize an objective function changes depending on the situation. In the context of shallow water equations (SWE), the calibration of parameters, such as the roughness coefficient or the gauge curve for the outlet boundary condition, is often required. In this work, the SWE are used to simulate an open channel flow with lateral gates. Due to the uncertainty in the mathematical modeling that these lateral discharges may introduce into the simulation, the work is focused on the calibration of discharge coefficients. Thus, the calibration is performed by two different approaches. On the one hand, a classical Monte Carlo method is used. On the other hand, the development and application of an adjoint formulation to evaluate the gradient is presented. This is then used in a gradient-based optimizer and is compared with the stochastic approach. The advantages and disadvantages are illustrated and discussed through different test cases.
Descripción34 Pags.- 14 Figs.- 2 Algorithms. The definitive version is available at: http://jh.iwaponline.com/
Versión del editorhttp://dx.doi.org/10.2166/hydro.2017.021
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BurgueteJ_JHydroinformatics_2017.pdf578,21 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.