Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/148600
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorVasseur, Guillaume-
dc.contributor.authorAbadia, Mikel-
dc.contributor.authorMiccio, Luis A.-
dc.contributor.authorBrede, Jens-
dc.contributor.authorGarcia-Lekue, Aran-
dc.contributor.authorOteyza, Dimas G. de-
dc.contributor.authorRogero, Celia-
dc.contributor.authorLobo-Checa, Jorge-
dc.contributor.authorOrtega, J. Enrique-
dc.date.accessioned2017-04-20T12:05:17Z-
dc.date.available2017-04-20T12:05:17Z-
dc.date.issued2016-
dc.identifierdoi: 10.1021/jacs.6b02151-
dc.identifiere-issn: 1520-5126-
dc.identifierissn: 0002-7863-
dc.identifier.citationJournal of the American Chemical Society 138(17): 5685-5692 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/148600-
dc.description.abstractSurface-confined dehalogenation reactions are versatile bottom-up approaches for the synthesis of carbonbased nanostructures with predefined chemical properties. However, for devices generally requiring low-conductivity substrates, potential applications are so far severely hampered by the necessity of a metallic surface to catalyze the reactions. In this work we report the synthesis of ordered arrays of poly(p-phenylene) chains on the surface of semiconducting TiO(110) via a dehalogenative homocoupling of 4,4″- dibromoterphenyl precursors. The supramolecular phase is clearly distinguished from the polymeric one using low-energy electron diffraction and scanning tunneling microscopy as the substrate temperature used for deposition is varied. X-ray photoelectron spectroscopy of C 1s and Br 3d core levels traces the temperature of the onset of dehalogenation to around 475 K. Moreover, angle-resolved photoemission spectroscopy and tightbinding calculations identify a highly dispersive band characteristic of a substantial overlap between the precursor's π states along the polymer, considered as the fingerprint of a successful polymerization. Thus, these results establish the first spectroscopic evidence that atomically precise carbon-based nanostructures can readily be synthesized on top of a transition-metal oxide surface, opening the prospect for the bottom-up production of novel molecule-semiconductor devices.-
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy (Grant No. MAT2013-46593-C6-4-P), the Basque Government (Grant No. IT-621-13), and the European Research Council under the EU Horizon 2020 research and innovation program (Grant Agreement No. 635919). We also acknowledge support from the Basque Department of Education, UPV/EHU (Grant No. IT-756-13), the Spanish Ministry of Science and Innovation (Grant No. MAT2013-46593-C6-2-P), and the European Union FP7-ICT Integrated Project PAMS (Contract No. 610446).-
dc.publisherAmerican Chemical Society-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/610446-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2013-46593-C6-4-P-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2013-46593-C6-2-P-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/635919-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleπ band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor-
dc.typeartículo-
dc.identifier.doi10.1021/jacs.6b02151-
dc.relation.publisherversionhttps://doi.org/10.1021/jacs.6b02151-
dc.date.updated2017-04-20T12:05:18Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttp://pubs.acs.org/page/policy/authorchoice_termsofuse.html-
dc.contributor.funderUniversidad del País Vasco-
dc.contributor.funderEusko Jaurlaritza-
dc.contributor.funderEuropean Commission-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderEuropean Research Council-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003086es_ES
dc.identifier.pmid27115554-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (CFM) Artículos
(ICMA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Oxide Semiconductor.pdf5,85 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

8
checked on 16-abr-2024

SCOPUSTM   
Citations

42
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

40
checked on 27-feb-2024

Page view(s)

279
checked on 19-abr-2024

Download(s)

260
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.